Reduced order LQG control design for port Hamiltonian systems
Authors
Yongxin Wu, Boussad Hamroun, Yann Le Gorrec, Bernhard Maschke
Abstract
The aim of this paper is to propose a reduced order control design method for large scale port Hamiltonian systems. To this end, a structure preserving reduction method and a modified LQG control design are combined to derive a reduced order model suitable for control purposes. We first recall the structure preserving reduction method for port Hamiltonian systems called effort constraint method and characterize the error bound associated to this reduction method. We then give sufficient conditions for non-standard LQG design which allow to design a passive controller equivalent to the control by interconnection of port Hamiltonian systems. This LQG method allows to define an LQG balanced realization by computing the LQG Gramians, the effort-constraint method is then used to derive a reduced order port Hamiltonian system and to design a reduced order passive LQG controller. Finally, the method is illustrated in simulation on a mass–spring–damper system. The performances of the reduced order controller are compared to the results obtained with a full order passive LQG controller.
Keywords
Port Hamiltonian system; Passive control design; Control by interconnection; LQG control problem; Closed loop system reduction; Reduced controller design
Citation
- Journal: Automatica
- Year: 2018
- Volume: 95
- Issue:
- Pages: 86–92
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2018.05.003
BibTeX
@article{Wu_2018,
title={{Reduced order LQG control design for port Hamiltonian systems}},
volume={95},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2018.05.003},
journal={Automatica},
publisher={Elsevier BV},
author={Wu, Yongxin and Hamroun, Boussad and Le Gorrec, Yann and Maschke, Bernhard},
year={2018},
pages={86--92}
}
References
- Antoulas, A. C. A new result on passivity preserving model reduction. Systems & Control Letters vol. 54 361–374 (2005) – 10.1016/j.sysconle.2004.07.007
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Balas, M. J. Active control of flexible systems. Journal of Optimization Theory and Applications vol. 25 415–436 (1978) – 10.1007/bf00932903
- Brogliato, (2007)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Halevi, Y. Stable LQG controllers. IEEE Transactions on Automatic Control vol. 39 2104–2106 (1994) – 10.1109/9.328801
- Hespanha, (2009)
- Jonckheere, E. & Silverman, L. A new set of invariants for linear systems–Application to reduced order compensator design. IEEE Transactions on Automatic Control vol. 28 953–964 (1983) – 10.1109/tac.1983.1103159
- Möckel, J., Reis, T. & Stykel, T. Linear-quadratic Gaussian balancing for model reduction of differential-algebraic systems. International Journal of Control vol. 84 1627–1643 (2011) – 10.1080/00207179.2011.622791
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Polyuga, R. V. & van der Schaft, A. Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos. IEEE Transactions on Automatic Control vol. 56 1458–1462 (2011) – 10.1109/tac.2011.2128650
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- van der Schaft, (2000)
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik Und ÜBertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Wu, (2015)
- Wu, Structure preserving reduction of port Hamiltonian system using a modified LQG method. (2014)