Structure preserving reduction of port hamiltonian system using a modified LQG method
Authors
Yongxin Wu, Boussad Hamroun, Yann Le Gorrec, Bernhard Maschke
Abstract
This paper proposes a controller reduction method for the port Hamiltonian system by using a modified LQG method. We first use the LQG method to design two passive type controllers which are equivalent to the control of port Hamiltonian system by interconnection. One of these LQG type method permit us to define a LQG balanced realization by computing its LQG Grammians. Then we use the effort-constraint method to achieve a reduced order port Hamiltonian system and design a reduced order passive type LQG controller. Finally, the method is illustrated on a mass-spring system by numerical simulations of the closed loop system with the full order passive LQG controller and with its reduced order controller.
Citation
- Journal: Proceedings of the 33rd Chinese Control Conference
- Year: 2014
- Volume:
- Issue:
- Pages: 3528–3533
- Publisher: IEEE
- DOI: 10.1109/chicc.2014.6895525
BibTeX
@inproceedings{Wu_2014,
title={{Structure preserving reduction of port hamiltonian system using a modified LQG method}},
DOI={10.1109/chicc.2014.6895525},
booktitle={{Proceedings of the 33rd Chinese Control Conference}},
publisher={IEEE},
author={Wu, Yongxin and Hamroun, Boussad and Le Gorrec, Yann and Maschke, Bernhard},
year={2014},
pages={3528--3533}
}
References
- Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
- van der Schaft, A. Balancing of Lossless and Passive Systems. IEEE Trans. Automat. Contr. 53, 2153–2157 (2008) – 10.1109/tac.2008.930192
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM J. Control Optim. 51, 906–937 (2013) – 10.1137/110840091
- Polyuga, R. V. & van der Schaft, A. Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos. IEEE Trans. Automat. Contr. 56, 1458–1462 (2011) – 10.1109/tac.2011.2128650
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters 61, 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46, 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Möckel, J., Reis, T. & Stykel, T. Linear-quadratic Gaussian balancing for model reduction of differential-algebraic systems. International Journal of Control 84, 1627–1643 (2011) – 10.1080/00207179.2011.622791
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- wu, Port hamiltonian system in descriptor form for balanced reduction: Application to a nanotweezer. 11th IFAC World Congress (2014)
- camp, A comparison of balanced truncation techniques for reduced order controllers. Math Theory of Networks and Syst (2002)
- schaft der van, Archiv f�r Elektronik und � bertragungstechnik. The Hamiltonian formulation of energy conserving physical systems with external ports (1995)
- Brogliato, B., Maschke, B., Lozano, R. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2007). doi:10.1007/978-1-84628-517-2 – 10.1007/978-1-84628-517-2
- King, B. B., Hovakimyan, N., Evans, K. A. & Buhl, M. Reduced order controllers for distributed parameter systems: LQG balanced truncation and an adaptive approach. Mathematical and Computer Modelling 43, 1136–1149 (2006) – 10.1016/j.mcm.2005.05.031
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48, 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Curtain, R. F. 4. Model Reduction for Control Design for Distributed Parameter Systems. Research Directions in Distributed Parameter Systems 95–121 (2003) doi:10.1137/1.9780898717525.ch4 – 10.1137/1.9780898717525.ch4
- Jonckheere, E. & Silverman, L. A new set of invariants for linear systems–Application to reduced order compensator design. IEEE Trans. Automat. Contr. 28, 953–964 (1983) – 10.1109/tac.1983.1103159
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control 16, 545–563 (2010) – 10.3166/ejc.16.545-563