Infinite-Dimensional Observers for High-Order Boundary-Controlled Port-Hamiltonian Systems
Authors
Jesus-Pablo Toledo-Zucco, Yongxin Wu, Hector Ramirez, Yann Le Gorrec
Abstract
This letter investigates the design of a class of infinite-dimensional observers for one dimensional (1D) boundary controlled port-Hamiltonian systems (BC-PHS) defined by differential operators of order \( N \geq 1 \). The convergence of the proposed observer depends on the number and location of available boundary measurements. Asymptotic convergence is assured for \( N\geq 1 \), and provided that enough boundary measurements are available, exponential convergence can be assured for the cases \( N=1 \) and \( N=2 \). Furthermore, in the case of partitioned BC-PHS with \( N=2 \), such as the Euler-Bernoulli beam, it is shown that exponential convergence can be assured considering less available measurements. The Euler-Bernoulli beam model is used to illustrate the design of the proposed observers and to perform numerical simulations.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2023
- Volume: 7
- Issue:
- Pages: 1676–1681
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2023.3278252
BibTeX
@article{Toledo_Zucco_2023,
title={{Infinite-Dimensional Observers for High-Order Boundary-Controlled Port-Hamiltonian Systems}},
volume={7},
ISSN={2475-1456},
DOI={10.1109/lcsys.2023.3278252},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Toledo-Zucco, Jesus-Pablo and Wu, Yongxin and Ramirez, Hector and Le Gorrec, Yann},
year={2023},
pages={1676--1681}
}
References
- Guo, B.-Z. & Xu, C.-Z. The Stabilization of a One-Dimensional Wave Equation by Boundary Feedback With Noncollocated Observation. IEEE Transactions on Automatic Control vol. 52 371–377 (2007) – 10.1109/tac.2006.890385
- Hidayat, Z., Babuska, R., De Schutter, B. & Nunez, A. Observers for linear distributed-parameter systems: A survey. 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE) 166–171 (2011) doi:10.1109/rose.2011.6058523 – 10.1109/rose.2011.6058523
- Guo, B.-Z. & Guo, W. The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica vol. 45 790–797 (2009) – 10.1016/j.automatica.2008.10.015
- Krstic, M., Guo, B.-Z., Balogh, A. & Smyshlyaev, A. Output-feedback stabilization of an unstable wave equation. Automatica vol. 44 63–74 (2008) – 10.1016/j.automatica.2007.05.012
- Macchelli, A., Le Gorrec, Y. & Ramirez, H. Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping. IEEE Transactions on Automatic Control vol. 65 4440–4447 (2020) – 10.1109/tac.2020.3004798
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Meurer, T. & Kugi, A. Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator. International Journal of Robust and Nonlinear Control vol. 21 542–562 (2011) – 10.1002/rnc.1611
- Smyshlyaev, A. & Krstic, M. Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary. Systems & Control Letters vol. 58 617–623 (2009) – 10.1016/j.sysconle.2009.04.005
- Smyshlyaev, A. & Krstic, M. Backstepping observers for a class of parabolic PDEs. Systems & Control Letters vol. 54 613–625 (2005) – 10.1016/j.sysconle.2004.11.001
- Feng, H. & Guo, B.-Z. Observer Design and Exponential Stabilization for Wave Equation in Energy Space by Boundary Displacement Measurement Only. IEEE Transactions on Automatic Control vol. 62 1438–1444 (2017) – 10.1109/tac.2016.2572122
- Toledo, J., Wu, Y., Ramírez, H. & Le Gorrec, Y. Observer-based boundary control of distributed port-Hamiltonian systems. Automatica vol. 120 109130 (2020) – 10.1016/j.automatica.2020.109130
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced Order LQG Control Design for Infinite Dimensional Port Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 66 865–871 (2021) – 10.1109/tac.2020.2997373
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Toledo, J., Wu, Y., Ramirez, H. & Gorrec, Y. L. Observer design for 1-D boundary controlled port-Hamiltonian systems with different boundary measurements. IFAC-PapersOnLine vol. 55 95–100 (2022) – 10.1016/j.ifacol.2022.10.383
- Meurer, T. & Kugi, A. Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness. Automatica vol. 45 1182–1194 (2009) – 10.1016/j.automatica.2009.01.006
- Malzer, T., Rams, H., Kolar, B. & Schoberl, M. Stability Analysis of the Observer Error of an In-Domain Actuated Vibrating String. IEEE Control Systems Letters vol. 5 1237–1242 (2021) – 10.1109/lcsys.2020.3025414
- Toledo, J., Ramirez, H., Wu, Y. & Gorrec, Y. L. Passive observers for distributed port-Hamiltonian systems. IFAC-PapersOnLine vol. 53 7587–7592 (2020) – 10.1016/j.ifacol.2020.12.1356
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038