Passive observers for distributed port-Hamiltonian systems
Authors
Jesús Toledo, Héctor Ramirez, Yongxin Wu, Yann Le Gorrec
Abstract
The observer design for 1D boundary controlled infinite-dimensional systems is addressed using the port-Hamiltonian approach. The observer is defined by the same partial differential equations as the original system and the boundary conditions depend on the available information from sensors and actuators. The convergence of the observers is proved to be asymptotically or exponentially under some conditions. The vibrating string and the Timoshenko beam are used to illustrate the observer convergence in different scenarios.
Keywords
Observer design; port-Hamiltonian distributed parameter systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 7587–7592
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1356
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Toledo_2020,
title={{Passive observers for distributed port-Hamiltonian systems}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1356},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Toledo, Jesús and Ramirez, Héctor and Wu, Yongxin and Gorrec, Yann Le},
year={2020},
pages={7587--7592}
}
References
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Castillo, F., Witrant, E., Prieur, C. & Dugard, L. Boundary observers for linear and quasi-linear hyperbolic systems with application to flow control. Automatica vol. 49 3180–3188 (2013) – 10.1016/j.automatica.2013.07.027
- Deguenon, A., Sallet, G., and Xu, C.Z. (2006). A Kalman observer for infinite-dimensional skew-symmetric systems with application to an elastic beam. In Proc. of the Second International Symposium on Communications, Control and Signal Processing. Marrakech Morocco.
- Demetriou, M. A. Natural second-order observers for second-order distributed parameter systems. Systems & Control Letters vol. 51 225–234 (2004) – 10.1016/j.sysconle.2003.08.005
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control vol. 6 349–385 (1968) – 10.1137/0306025
- Guo, B.-Z. & Guo, W. The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica vol. 45 790–797 (2009) – 10.1016/j.automatica.2008.10.015
- Guo, B.-Z. & Xu, C.-Z. The Stabilization of a One-Dimensional Wave Equation by Boundary Feedback With Noncollocated Observation. IEEE Transactions on Automatic Control vol. 52 371–377 (2007) – 10.1109/tac.2006.890385
- Hidayat, Z., Babuska, R., De Schutter, B. & Nunez, A. Observers for linear distributed-parameter systems: A survey. 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE) 166–171 (2011) doi:10.1109/rose.2011.6058523 – 10.1109/rose.2011.6058523
- Krstic, M., Guo, B.-Z., Balogh, A. & Smyshlyaev, A. Output-feedback stabilization of an unstable wave equation. Automatica vol. 44 63–74 (2008) – 10.1016/j.automatica.2007.05.012
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Luenberger, D. G. Observing the State of a Linear System. IEEE Transactions on Military Electronics vol. 8 74–80 (1964) – 10.1109/tme.1964.4323124
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control vol. 19 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Meurer, T. On the Extended Luenberger-Type Observer for Semilinear Distributed-Parameter Systems. IEEE Transactions on Automatic Control vol. 58 1732–1743 (2013) – 10.1109/tac.2013.2243312
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Smyshlyaev, A. & Krstic, M. Backstepping observers for a class of parabolic PDEs. Systems & Control Letters vol. 54 613–625 (2005) – 10.1016/j.sysconle.2004.11.001
- Tao, G. & Ioannou, P. A. Strictly positive real matrices and the Lefschetz-Kalman-Yakubovich lemma. IEEE Transactions on Automatic Control vol. 33 1183–1185 (1988) – 10.1109/9.14449
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Structure preserving spatial discretization of 2D hyperbolic systems using staggered grids finite difference. 2017 American Control Conference (ACC) 2491–2496 (2017) doi:10.23919/acc.2017.7963327 – 10.23919/acc.2017.7963327
- Villegas, J. (2007). A Port-Hamiltonian Approach to Distributed Parameter Systems. Ph.D. thesis, University of Twente, Netherlands.
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176