Observer design for 1-D boundary controlled port-Hamiltonian systems with different boundary measurements
Authors
Jesus Toledo, Yongxin Wu, Hector Ramirez, Yann Le Gorrec
Abstract
This paper investigates the observer design for the 1D boundary controlled port-Hamiltonian systems (BC-PHS) using the late lumping approach. Different observers are proposed for BC-PHS with different measured boundary variables. Based on the passivity propriety of the BC-PHS, sufficient conditions of the observer error convergence are provided for the different proposed observers. The wave equation is used to illustrate the effectiveness of the proposed observers with different boundary sensing.
Keywords
Distributed port-Hamiltonian systems; Observer design; Boundary measurements; Exponential stability; Asymptotic stability
Citation
- Journal: IFAC-PapersOnLine
- Year: 2022
- Volume: 55
- Issue: 26
- Pages: 95–100
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2022.10.383
- Note: 4th IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2022- Kiel, Germany, September 5-7, 2022
BibTeX
@article{Toledo_2022,
title={{Observer design for 1-D boundary controlled port-Hamiltonian systems with different boundary measurements}},
volume={55},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2022.10.383},
number={26},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Toledo, Jesus and Wu, Yongxin and Ramirez, Hector and Gorrec, Yann Le},
year={2022},
pages={95--100}
}
References
- Curtain, (2012)
- Feng, H. & Guo, B.-Z. Observer Design and Exponential Stabilization for Wave Equation in Energy Space by Boundary Displacement Measurement Only. IEEE Transactions on Automatic Control vol. 62 1438–1444 (2017) – 10.1109/tac.2016.2572122
- Guo, B.-Z. & Guo, W. The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica vol. 45 790–797 (2009) – 10.1016/j.automatica.2008.10.015
- Guo, B.-Z. & Xu, C.-Z. The Stabilization of a One-Dimensional Wave Equation by Boundary Feedback With Noncollocated Observation. IEEE Transactions on Automatic Control vol. 52 371–377 (2007) – 10.1109/tac.2006.890385
- Hidayat, Observers for linear distributed-parameter systems: A survey. (2011)
- Krstic, M., Guo, B.-Z., Balogh, A. & Smyshlyaev, A. Output-feedback stabilization of an unstable wave equation. Automatica vol. 44 63–74 (2008) – 10.1016/j.automatica.2007.05.012
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Luenberger, D. G. Observing the State of a Linear System. IEEE Transactions on Military Electronics vol. 8 74–80 (1964) – 10.1109/tme.1964.4323124
- Macchelli, A. & Califano, F. Dissipativity-based boundary control of linear distributed port-Hamiltonian systems. Automatica vol. 95 54–62 (2018) – 10.1016/j.automatica.2018.05.029
- Macchelli, A., Le Gorrec, Y. & Ramirez, H. Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping. IEEE Transactions on Automatic Control vol. 65 4440–4447 (2020) – 10.1109/tac.2020.3004798
- Malzer, T., Rams, H., Kolar, B. & Schoberl, M. Stability Analysis of the Observer Error of an In-Domain Actuated Vibrating String. IEEE Control Systems Letters vol. 5 1237–1242 (2021) – 10.1109/lcsys.2020.3025414
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Meurer, T. & Kugi, A. Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator. International Journal of Robust and Nonlinear Control vol. 21 542–562 (2011) – 10.1002/rnc.1611
- Meurer, T. & Kugi, A. Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness. Automatica vol. 45 1182–1194 (2009) – 10.1016/j.automatica.2009.01.006
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Smyshlyaev, A. & Krstic, M. Backstepping observers for a class of parabolic PDEs. Systems & Control Letters vol. 54 613–625 (2005) – 10.1016/j.sysconle.2004.11.001
- Smyshlyaev, A. & Krstic, M. Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary. Systems & Control Letters vol. 58 617–623 (2009) – 10.1016/j.sysconle.2009.04.005
- Toledo, Passive observers for distributed port-hamiltonian systems. (2020)
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, (2007)
- Villegas, Stability and stabilization of a class of boundary control systems. (2005)
- Wu, Reduced order LQG control design for infinite dimensional port hamiltonian systems. IEEE Transactions on Automatic Control (2020)