Energy Shaping Control of 1D Distributed Parameter Systems
Authors
Yann Le Gorrec, Hector Ramirez, Yongxin Wu, Ning Liu, Alessandro Macchelli
Abstract
In this chapter we give an overview on energy shaping control for Distributed Parameter Systems defined on a 1D spatial domain using the port Hamiltonian framework. We consider two different cases: when actuators and sensors are located within the spatial domain and when the actuator is situated at the boundary of the spatial domain, leading to a boundary control system (BCS). In the first case we show how dynamic extensions and structural invariants can be used to change the internal properties of the system when the system is fully actuated, and how it can be done in an approximate way when the system is actuated using piecewise continuous actuators stemming from the use of patches. Asymptotic stability is achieved using damping injection. In the boundary controlled case we show how the closed loop energy function can be partially shaped, modifying the minimum and a part of the shape of this function and how damping injection can be used to guarantee asymptotic convergence.
Citation
- ISBN: 9783030947651
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-030-94766-8_1
BibTeX
@inbook{Le_Gorrec_2022,
title={{Energy Shaping Control of 1D Distributed Parameter Systems}},
ISBN={9783030947668},
ISSN={2197-1161},
DOI={10.1007/978-3-030-94766-8_1},
booktitle={{Advances in Distributed Parameter Systems}},
publisher={Springer International Publishing},
author={Le Gorrec, Yann and Ramirez, Hector and Wu, Yongxin and Liu, Ning and Macchelli, Alessandro},
year={2022},
pages={3--26}
}References
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Modeling and control of complex physical systems—the Port-Hamiltonian approach (2009)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 62, 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica 85, 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Kurula, M. & Zwart, H. Linear wave systems onn-D spatial domains. International Journal of Control 1–24 (2014) doi:10.1080/00207179.2014.993337 – 10.1080/00207179.2014.993337
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Ortega, R., van der Schaft, A. J., Mareels, I. & Maschke, B. Energy shaping control revisited. Lecture Notes in Control and Information Sciences 277–307 (2001) doi:10.1007/bfb0110388 – 10.1007/bfb0110388
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Port-Hamiltonian Systems. Modeling and Control of Complex Physical Systems 53–130 (2009) doi:10.1007/978-3-642-03196-0_2 – 10.1007/978-3-642-03196-0_2
- Trenchant, V., Vu, T., Ramirez, H., Lefevre, L. & Le Gorrec, Y. On the use of structural invariants for the distributed control of infinite dimensional port-Hamitonian systems. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 47–52 (2017) doi:10.1109/cdc.2017.8263641 – 10.1109/cdc.2017.8263641
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Liu, N., Wu, Y., Le Gorrec, Y., Lefèvre, L. & Ramirez, H. In-domain finite dimensional control of distributed parameter port-Hamiltonian systems via energy shaping. 2021 Proceedings of the Conference on Control and its Applications 70–77 (2021) doi:10.1137/1.9781611976847.10 – 10.1137/1.9781611976847.10
- Shores, T. S. Applied Linear Algebra and Matrix Analysis. Undergraduate Texts in Mathematics (Springer New York, 2007). doi:10.1007/978-0-387-48947-6 – 10.1007/978-0-387-48947-6