On the use of structural invariants for the distributed control of infinite dimensional port-Hamitonian systems
Authors
Vincent Trenchant, Trang Vu, Hector Ramirez, Laurent Lefevre, Yann Le Gorrec
Abstract
In this paper the control by immersion and structural invariants is extended to the distributed control of infinite dimensional port-Hamiltonian systems defined on a 1D spatial domain. The main novelty lies in fact that the structural invariants are not used to shape the closed loop energy function but to modify the closed loop structure of the system by an appropriate choice of the controller structure. In particular it is shown that in the fully actuated case, this control strategy allows to transform an hyperbolic system composed of two conservation laws into a parabolic one. This work is illustrated on the example of the wave equation but can be easily generalised to a large class of systems encompassing vibrating strings and beam equations.
Citation
- Journal: 2017 IEEE 56th Annual Conference on Decision and Control (CDC)
- Year: 2017
- Volume:
- Issue:
- Pages: 47–52
- Publisher: IEEE
- DOI: 10.1109/cdc.2017.8263641
BibTeX
@inproceedings{Trenchant_2017,
title={{On the use of structural invariants for the distributed control of infinite dimensional port-Hamitonian systems}},
DOI={10.1109/cdc.2017.8263641},
booktitle={{2017 IEEE 56th Annual Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Trenchant, Vincent and Vu, Trang and Ramirez, Hector and Lefevre, Laurent and Le Gorrec, Yann},
year={2017},
pages={47--52}
}
References
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Gorrec, Y. L., Macchelli, A., Ramirez, H. & Zwart, H. Energy shaping of boundary controlled linear port Hamiltonian systems. IFAC Proceedings Volumes 47, 1580–1585 (2014) – 10.3182/20140824-6-za-1003.01966
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 62, 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Trenchant, V., Fares, Y., Ramirez, H. & Le Gorrec, Y. A port-Hamiltonian formulation of a 2D boundary controlled acoustic system. IFAC-PapersOnLine 48, 235–240 (2015) – 10.1016/j.ifacol.2015.10.245
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- khalil, Nonlinear Systems (Third Edition) (2002)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- le gorrec, A semigroup approach to port hamiltonian systems associated with linear skew symmetric operator. (0)
- jacob, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces ser Operator Theory Advances and Applications (2012)
- villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems (2007)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176