Authors

B.M. Maschke, A.J. Van Der Schaft, P.C. Breedveld

Abstract

The aim of this paper is to provide an intrinsic Hamiltonian formulation of the equations of motion of network models of non-resistive physical systems. A recently developed extension of the classical Hamiltonian equations of motion considers systems with state space given by Poisson manifolds endowed with degenerate Poisson structures, examples of which naturally appear in the reduction of systems with symmetry. The link with network representations of non-resistive physical systems is established using the generalized bond graph formalism which has the essential feature of symmetrizing all the energetic network elements into a single class and introducing a coupling unit gyrator. The relation between the Hamiltonian formalism and network dynamics is then investigated through the representation of the invariants of the system, either captured in the degeneracy of the Poisson structure or in the topological constraints at the ports of the gyrative type network structure. This provides a Hamiltonian formulation of dimension equal to the order of the physical system, in particular, for odd dimensional systems. A striking example is the direct Hamiltonian formulation of electrical LC networks.

Citation

  • Journal: Journal of the Franklin Institute
  • Year: 1992
  • Volume: 329
  • Issue: 5
  • Pages: 923–966
  • Publisher: Elsevier BV
  • DOI: 10.1016/s0016-0032(92)90049-m

BibTeX

@article{Maschke_1992,
  title={{An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators}},
  volume={329},
  ISSN={0016-0032},
  DOI={10.1016/s0016-0032(92)90049-m},
  number={5},
  journal={Journal of the Franklin Institute},
  publisher={Elsevier BV},
  author={Maschke, B.M. and Van Der Schaft, A.J. and Breedveld, P.C.},
  year={1992},
  pages={923--966}
}

Download the bib file

References

  • Arnold, (1978)
  • Abraham, (1978)
  • Marmo, (1985)
  • Galavotti, (1983)
  • Libermann, (1987)
  • Krishnaprasad, P. S. & Marsden, J. E. Hamiltonian structures and stability for rigid bodies with flexible attachments. Arch. Rational Mech. Anal. 98, 71–93 (1987) – 10.1007/bf00279963
  • Bernstein, G. M. & Lieberman, M. A. A method for obtaining a canonical Hamiltonian for nonlinear LC circuits. IEEE Trans. Circuits Syst. 36, 411–420 (1989) – 10.1109/31.17588
  • Brockett, Control theory and analytical mechanics. (1977)
  • van der Schaft, System Theoretic Descriptions of Physical Systems. (1984)
  • van der Schaft, System theory and mechanics. (1989)
  • Paynter, (1961)
  • Karnopp, (1975)
  • Breedveld, Physical systems theory in terms of bond graphs. (1984)
  • Oster, G. F. & Perelson, A. S. Chemical reaction dynamics. Arch. Rational Mech. Anal. 55, 230–274 (1974) – 10.1007/bf00281751
  • Perelson, Chemical reaction dynamics. Part 2: reaction networks. Archs ration. Mech. Anal. (1975)
  • van Dixhoorn, The use of network graphs and bond graphs in 3D-mechanical models of motor cars and unbalance. (1974)
  • Allen, R. R. Multiport representation of inertia properties of kinematic mechanisms. Journal of the Franklin Institute 308, 235–253 (1979) – 10.1016/0016-0032(79)90115-7
  • Bos, A. M. & Tiernego, M. J. L. Formula manipulation in the bond graph modelling and simulation of large mechanical systems. Journal of the Franklin Institute 319, 51–65 (1985) – 10.1016/0016-0032(85)90064-x
  • Branin, The network concept as unifying principle in engineering and the physical sciences. (1977)
  • Trent, H. M. Isomorphisms between Oriented Linear Graphs and Lumped Physical Systems. The Journal of the Acoustical Society of America 27, 500–527 (1955) – 10.1121/1.1907949
  • Evans, Towards more physical structure in systems theory. (1974)
  • Breedveld, P. C. Multibond graph elements in physical systems theory. Journal of the Franklin Institute 319, 1–36 (1985) – 10.1016/0016-0032(85)90062-6
  • Jones, D. L. & Evans, F. J. Variational analysis of electrical networks. Journal of the Franklin Institute 295, 9–23 (1973) – 10.1016/0016-0032(73)90249-4
  • Breedveld, P. C. Thermodynamic Bond Graphs: A New Synthesis. International Journal of Modelling and Simulation 1, 57–61 (1981) – 10.1080/02286203.1981.11760441
  • Breedveld, P. C. Thermodynamic Bond Graphs and the Problem of Thermal Inertance. Journal of the Franklin Institute 314, 15–40 (1982) – 10.1016/0016-0032(82)90050-3
  • Smale, S. On the mathematical foundations of electrical circuit theory. J. Differential Geom. 7, (1972) – 10.4310/jdg/1214430827
  • Maschke, B. Geometrical formulation of bond graph dynamics with application to mechanisms. Journal of the Franklin Institute 328, 723–740 (1991) – 10.1016/0016-0032(91)90050-d
  • Lie, (1890)
  • Carathéodory, (1965)
  • Weinstein, A. The local structure of Poisson manifolds. J. Differential Geom. 18, (1983) – 10.4310/jdg/1214437787
  • Hermann, (1975)
  • Lichnerowicz, A. Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geom. 12, (1977) – 10.4310/jdg/1214433987
  • Karnopp, D. Lagrange’s Equations for Complex Bond Graph Systems. Journal of Dynamic Systems, Measurement, and Control 99, 300–306 (1977) – 10.1115/1.3427123
  • Karnopp, D. Alternative Bond Graph Causal Patterns and Equation Formulations for Dynamic Systems. Journal of Dynamic Systems, Measurement, and Control 105, 58–63 (1983) – 10.1115/1.3149645
  • Reeb, Variétés symplectiques, variétés presque-complexes et systémes dynamiques. C.R. Acad. Sci. Paris (1952)
  • Cartan, (1922)
  • Olver, (1986)
  • Arnold, The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and an ideal fluid. Usp. Mat. Nauk. (1969)
  • Whittaker, (1937)
  • Marsden, J. & Weinstein, A. Reduction of symplectic manifolds with symmetry. Reports on Mathematical Physics 5, 121–130 (1974) – 10.1016/0034-4877(74)90021-4
  • Marsden, Coadjoint orbits, vertices and Clebsch variables for incompressible fluids. Physica 7D (1983)
  • Hogan, Conservation principles and bond graph junction structure. Automated Modelling for Design, Trans. ASME DSC-Vol. 8 (1988)
  • Bidard, Displaying Kirchhoff’s invariants in simple junction structure. Proc. 5th IMACS World Congress (1991)
  • Breedveld, A systematic method to derive bond graph models. Trans. 2nd Eur. Simulation Congress (1986)
  • Birkett, S. H. & Roe, P. H. The mathematical foundations of bond graphs—I. Algebraic theory. Journal of the Franklin Institute 326, 329–350 (1989) – 10.1016/0016-0032(89)90015-x
  • Birkett, S. H. & Roe, P. H. The mathematical foundations of bond graphs—II. duality. Journal of the Franklin Institute 326, 691–708 (1989) – 10.1016/0016-0032(89)90027-6
  • Birkett, S. H. & Roe, P. H. The mathematical foundations of bond graphs—III. Matroid theory. Journal of the Franklin Institute 327, 87–108 (1990) – 10.1016/0016-0032(90)90059-r
  • Birkett, S. H. & Roe, P. H. The mathematical foundations of bond graphs—IV. Matrix representations and causality. Journal of the Franklin Institute 327, 109–128 (1990) – 10.1016/0016-0032(90)90060-v
  • Perelson, A. S. & Oster, G. F. Bond graphs and linear graphs. Journal of the Franklin Institute 302, 159–185 (1976) – 10.1016/0016-0032(76)90021-1
  • Bidard, Bond graph procedure for the structural analysis of mechanisms—Part 1: kinematic junction structures and causality assignment. Proc. 5th IFToMM Int. Symp. Linkages and Computer Aided Design Methods (1989)
  • Bidard, C. Kinematic structure of mechanisms: a bond graph approach. Journal of the Franklin Institute 328, 901–915 (1991) – 10.1016/0016-0032(91)90061-7
  • Karnopp, D. Power-conserving transformations: physical interpretations and applications using bond graphs. Journal of the Franklin Institute 288, 175–201 (1969) – 10.1016/0016-0032(69)00246-8
  • Breedveld, P. C. Decomposition of multiport elements in a revised multibond graph notation. Journal of the Franklin Institute 318, 253–273 (1984) – 10.1016/0016-0032(84)90014-0