Control Design for Linear Port-Hamiltonian Boundary Control Systems: An Overview
Authors
A. Macchelli, Y. Le Gorrec, H. Ramírez, H. Zwart, F. Califano
Abstract
In this paper, we provide an overview of some control synthesis methodologies for boundary control systems (BCS) in port-Hamiltonian form. At first, it is shown how to design a state-feedback control action able to shape the energy function to move its minimum at the desired equilibrium, and how to achieve asymptotic stability via damping injection. Secondly, general conditions that a linear regulator has to satisfy to have a well-posed and exponentially stable closed-loop system are presented. This second methodology is illustrated with reference to two specific stabilisation scenarios, namely when the plant is in impedance or in scattering form. It is also shown how these techniques can be employed in the analysis of more general systems described by coupled PDEs and ODEs. As an example, the repetitive control scheme is studied, and conditions to have asymptotic tracking of generic periodic reference signals are presented.
Citation
- ISBN: 9783030617417
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-030-61742-4_4
BibTeX
@inbook{Macchelli_2021,
title={{Control Design for Linear Port-Hamiltonian Boundary Control Systems: An Overview}},
ISBN={9783030617424},
ISSN={2199-305X},
DOI={10.1007/978-3-030-61742-4_4},
booktitle={{Stabilization of Distributed Parameter Systems: Design Methods and Applications}},
publisher={Springer International Publishing},
author={Macchelli, A. and Gorrec, Y. Le and Ramírez, H. and Zwart, H. and Califano, F.},
year={2021},
pages={57--72}
}
References
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory 3, 207–229 (2014) – 10.3934/eect.2014.3.207
- Brogliato, B., Maschke, B., Lozano, R. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2007). doi:10.1007/978-1-84628-517-2 – 10.1007/978-1-84628-517-2
- Califano, F., Bin, M., Macchelli, A. & Melchiorri, C. Stability Analysis of Nonlinear Repetitive Control Schemes. IEEE Control Syst. Lett. 2, 773–778 (2018) – 10.1109/lcsys.2018.2849617
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Francis, B. A. & Wonham, W. M. The internal model principle of control theory. Automatica 12, 457–465 (1976) – 10.1016/0005-1098(76)90006-6
- Hara, S., Yamamoto, Y., Omata, T. & Nakano, M. Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans. Automat. Contr. 33, 659–668 (1988) – 10.1109/9.1274
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control 19, 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Macchelli, A. & Califano, F. Dissipativity-based boundary control of linear distributed port-Hamiltonian systems. Automatica 95, 54–62 (2018) – 10.1016/j.automatica.2018.05.029
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 62, 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control 80, 1421–1438 (2007) – 10.1080/00207170701361273
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica 85, 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Trans. Automat. Contr. 58, 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mech 222, 69–89 (2011) – 10.1007/s00707-011-0510-2
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176