C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain
Authors
Birgit Jacob, Kirsten Morris, Hans Zwart
Abstract
Hyperbolic partial differential equations on a one-dimensional spatial domain are studied. This class of systems includes models of beams and waves as well as the transport equation and networks of non-homogeneous transmission lines. The main result of this paper is a simple test for C _0-semigroup generation in terms of the boundary conditions. The result is illustrated with several examples.
Keywords
\( C_0 \)-semigroups; Hyperbolic partial differential equations; Port-Hamiltonian differential equations
Citation
- Journal: Journal of Evolution Equations
- Year: 2015
- Volume: 15
- Issue: 2
- Pages: 493–502
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00028-014-0271-1
BibTeX
@article{Jacob_2015,
title={{C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain}},
volume={15},
ISSN={1424-3202},
DOI={10.1007/s00028-014-0271-1},
number={2},
journal={Journal of Evolution Equations},
publisher={Springer Science and Business Media LLC},
author={Jacob, Birgit and Morris, Kirsten and Zwart, Hans},
year={2015},
pages={493--502}
}
References
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Engel, K.-J. Generator property and stability for generalized difference operators. Journal of Evolution Equations vol. 13 311–334 (2013) – 10.1007/s00028-013-0179-1
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- E. Sikolya, Semigroups for flows in networks, Ph.D thesis, University of Tübingen, 2004.
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- J.A. Villegas, A port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, Universiteit Twente in Enschede, 2007. Available from: http://doc.utwente.nl/57842/1/thesis_Villegas .
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036
- Kato, T. Perturbation Theory for Linear Operators. Classics in Mathematics (Springer Berlin Heidelberg, 1995). doi:10.1007/978-3-642-66282-9 – 10.1007/978-3-642-66282-9