Port-Hamiltonian Systems’ Modelling in Electrical Engineering
Authors
Andreas Bartel, Markus Clemens, Michael Günther, Birgit Jacob, Timo Reis
Abstract
The port-Hamiltonian (pH) modelling framework allows for models that preserve essential physical properties such as energy conservation or dissipative inequalities. If all subsystems are modelled as pH systems and the inputs are related to the output in a linear manner, the overall system can be modelled as a pH system, too, which preserves the properties of the underlying subsystems. If the coupling is given by a skew-symmetric matrix, as usual in many applications, the overall system can be easily derived from the subsystems without the need of introducing dummy variables and therefore artificially increasing the complexity of the system. Hence the framework of pH systems is especially suitable for modelling multiphysical systems. In this paper, we show that pH systems are a natural generalization of Hamiltonian systems, define coupled pH systems as ordinary and differential-algebraic equations. To highlight the suitability for electrical engineering applications, we derive pH models for MNA network equations, electromagnetic devices and coupled systems thereof.
Citation
- ISBN: 9783031545160
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-54517-7_15
- Note: International Conference on Scientific Computing in Electrical Engineering
BibTeX
@inbook{Bartel_2024,
title={{Port-Hamiltonian Systems’ Modelling in Electrical Engineering}},
ISBN={9783031545177},
ISSN={2198-3283},
DOI={10.1007/978-3-031-54517-7_15},
booktitle={{Scientific Computing in Electrical Engineering}},
publisher={Springer Nature Switzerland},
author={Bartel, Andreas and Clemens, Markus and Günther, Michael and Jacob, Birgit and Reis, Timo},
year={2024},
pages={133--143}
}
References
- Arnold, M. & Günther, M. Bit Numerical Mathematics 41, 1–25 (2001) – 10.1023/a:1021909032551
- Bartel, A. & Günther, M. Multirate Schemes — An Answer of Numerical Analysis to a Demand from Applications. Mathematics in Industry 5–27 (2022) doi:10.1007/978-3-030-96173-2_1 – 10.1007/978-3-030-96173-2_1
- Bartel, A., Günther, M., Jacob, B. & Reis, T. Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems. Numer. Math. 155, 1–34 (2023) – 10.1007/s00211-023-01369-5
- Bartel, A., Brunk, M., Günther, M. & Schöps, S. Dynamic Iteration for Coupled Problems of Electric Circuits and Distributed Devices. SIAM J. Sci. Comput. 35, B315–B335 (2013) – 10.1137/120867111
- – 10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8
- Gonzalez, O. Time integration and discrete Hamiltonian systems. J Nonlinear Sci 6, 449–467 (1996) – 10.1007/bf02440162
- Günther, M., Bartel, A., Jacob, B. & Reis, T. Dynamic iteration schemes and port‐Hamiltonian formulation in coupled differential‐algebraic equation circuit simulation. Circuit Theory & Apps 49, 430–452 (2020) – 10.1002/cta.2870
- M Günther, Surv. Math. Ind. (1999)
- Günther, M. & Sandu, A. Multirate generalized additive Runge Kutta methods. Numer. Math. 133, 497–524 (2015) – 10.1007/s00211-015-0756-z
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- D Jeltsema, Found. Trends Syst. Control (2014)
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65