Some notes on port-Hamiltonian systems on Banach spaces
Authors
Abstract
We consider port-Hamiltonian systems from a functional analytic perspective. Dirac structures and Hamiltonians on Banach spaces are introduced, and an energy balance is proven. Further, we consider port-Hamiltonian systems on Banach manifolds, and we present some physical examples that fit into the presented theory.
Keywords
port-Hamiltonian systems; partial differential-algebraic systems; Dirac structures; Banach manifold; infinite dimensional systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 223–229
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.082
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Reis_2021,
title={{Some notes on port-Hamiltonian systems on Banach spaces}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.082},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Reis, Timo},
year={2021},
pages={223--229}
}
References
- Alt, (2016)
- Arendt, W. & Kreuter, M. Mapping theorems for Sobolev spaces of vector-valued functions. Studia Mathematica vol. 240 275–299 (2018) – 10.4064/sm8757-4-2017
- Barbu, V. Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics (Springer New York, 2010). doi:10.1007/978-1-4419-5542-5 – 10.1007/978-1-4419-5542-5
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Cortes Garcia, Systems of differential algebraic equations in computational electromagnetics. (2018)
- Gernandt, A linear relation approach to port-Hamiltonian differential-algebraic equations. (2020)
- Gernandt, Port-Hamiltonian formulation of nonlinear electrical circuits. J. Geom. Phys. (2020)
- Jacob, (2012)
- Jeltsema, Port-Hamiltonian systems theory: An introductory overview. Foundations and Trends in Systems and Control (2014)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- Reis, Analysis of a quasilin-ear coupled magneto-quasistatic model. Part II: Passivity, port-Hamiltonian formulation and solution estimates. (2021)
- Zeidler, (1986)
- Zeidler, (1986)