Port-Hamiltonian Formulation of Oseen Flows
Authors
Abstract
We present Oseen equations on Lipschitz domains in a port-Hamiltonian context. Such equations arise, for instance, by linearization of the Navier-Stokes equations. In our setup, the external port consists of the boundary traces of velocity and the normal component of the stress tensor, and boundary control is imposed by velocity and normal stress tensor prescription at disjoint parts of the boundary. We employ the recently developed theory of port-Hamiltonian system nodes for our formulation. An illustration is provided by means of flow through a cylinder.
Keywords
Port-Hamiltonian systems; Flow problems; System nodes; Boundary control
Citation
- ISBN: 9783031649905
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-64991-2_5
- Note: Workshop on Systems Theory and PDEs
BibTeX
@inbook{Reis_2024,
title={{Port-Hamiltonian Formulation of Oseen Flows}},
ISBN={9783031649912},
ISSN={2297-024X},
DOI={10.1007/978-3-031-64991-2_5},
booktitle={{Systems Theory and PDEs}},
publisher={Springer Nature Switzerland},
author={Reis, Timo and Schaller, Manuel},
year={2024},
pages={123--148}
}
References
- Achleitner, F., Arnold, A. & Mehrmann, V. Hypocoercivity in Algebraically Constrained Partial Differential Equations with Application to Oseen Equations. Journal of Dynamics and Differential Equations (2023) doi:10.1007/s10884-023-10327-6 – 10.1007/s10884-023-10327-6
- RA Adams, Sobolev Spaces, volume 140 of Pure and Applied Mathematics (2003)
- Alt, H. W. Linear Functional Analysis. Universitext (Springer London, 2016). doi:10.1007/978-1-4471-7280-2 – 10.1007/978-1-4471-7280-2
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Arendt, W. & ter Elst, A. F. M. From Forms to Semigroups. Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations 47–69 (2012) doi:10.1007/978-3-0348-0297-0_4 – 10.1007/978-3-0348-0297-0_4
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Braack, M., Burman, E., John, V. & Lube, G. Stabilized finite element methods for the generalized Oseen problem. Computer Methods in Applied Mechanics and Engineering vol. 196 853–866 (2007) – 10.1016/j.cma.2006.07.011
- J Diestel, Vector Measures, volume 15 of Mathematical Surveys and Monographs (1977)
- K-J Engel, One-Parameter Semigroups for Linear Evolution Equations (2000)
- E Fernández-Cara, Recent Advances in Pure and Applied Mathematics (2020)
- Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. (2018) doi:10.1007/978-3-319-13344-7 – 10.1007/978-3-319-13344-7
- V Girault, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms (2012)
- P Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics (1985)
- Haine, G. & Matignon, D. Incompressible Navier-Stokes Equation as port-Hamiltonian systems: velocity formulation versus vorticity formulation. IFAC-PapersOnLine vol. 54 161–166 (2021) – 10.1016/j.ifacol.2021.11.072
- Heiland, J. Convergence of coprime factor perturbations for robust stabilization of Oseen systems. Mathematical Control and Related Fields vol. 12 747 (2022) – 10.3934/mcrf.2021043
- Hieber, M. On operator semigroups arising in the study of incompressible viscous fluid flows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 378 20190618 (2020) – 10.1098/rsta.2019.0618
- Jacob, B. & Morris, K. On Solvability of Dissipative Partial Differential-Algebraic Equations. IEEE Control Systems Letters vol. 6 3188–3193 (2022) – 10.1109/lcsys.2022.3183479
- D Jeltsema, Found. Trends Syst. Control (2014)
- M Marion, Handbook Numer. Anal. (1998)
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Monniaux, S. Navier-Stokes equations in arbitrary domains : the Fujita-Kato scheme. Mathematical Research Letters vol. 13 455–461 (2006) – 10.4310/mrl.2006.v13.n3.a9
- Mora, L. A., Gorrec, Y. L., Matignon, D., Ramirez, H. & Yuz, J. I. About Dissipative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows. IFAC-PapersOnLine vol. 53 11521–11526 (2020) – 10.1016/j.ifacol.2020.12.604
- A Quarteroni, Numerical Approximation of Partial Differential Equations (2008)
- Raymond, J.-P. Feedback Boundary Stabilization of the Two-Dimensional Navier–Stokes Equations. SIAM Journal on Control and Optimization vol. 45 790–828 (2006) – 10.1137/050628726
- Raymond, J.-P. Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Annales de l’Institut Henri Poincaré C, Analyse non linéaire vol. 24 921–951 (2007) – 10.1016/j.anihpc.2006.06.008
- Reis, T. Some notes on port-Hamiltonian systems on Banach spaces. IFAC-PapersOnLine vol. 54 223–229 (2021) – 10.1016/j.ifacol.2021.11.082
- O Staffans, Well-Posed Linear Systems, volume 103 of Encyclopedia of Mathematics and its Applications (2005)
- GE Swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory, volume 102 of Monographs and Surveys in Pure and Applied Mathematics (1999)
- Temam, R. Navier–Stokes Equations and Nonlinear Functional Analysis. (1995) doi:10.1137/1.9781611970050 – 10.1137/1.9781611970050
- Temam, R. Navier–Stokes Equations. (2001) doi:10.1090/chel/343 – 10.1090/chel/343