Structure-preserving discretization of multidimensional linear port-Hamiltonian systems using FEM approaches
Authors
Cristobal Ponce, Yongxin Wu, Yann Le Gorrec, Hector Ramirez
Abstract
This study introduces a novel control oriented structure-preserving scheme for discretizing a class of multi-dimensional linear port-Hamiltonian systems, preserving their inherent structure while enabling the imposition of diverse combinations of boundary inputs, such as generalized velocities, displacements, and tractions. The proposed approach is grounded on the modified Linked Lagrange Multiplier method and the mixed Finite Element Method (FEM), where Dirichlet and Neumann boundary conditions are weakly enforced. Connections with other standard and mixed FEM approaches are also discussed. The proposed scheme is validated through comparisons with commercial software and simulations using a 2D elasticity model as a demonstrative example.
Citation
- Journal: 2024 IEEE 63rd Conference on Decision and Control (CDC)
- Year: 2024
- Volume:
- Issue:
- Pages: 2676–2681
- Publisher: IEEE
- DOI: 10.1109/cdc56724.2024.10886295
BibTeX
@inproceedings{Ponce_2024,
title={{Structure-preserving discretization of multidimensional linear port-Hamiltonian systems using FEM approaches}},
DOI={10.1109/cdc56724.2024.10886295},
booktitle={{2024 IEEE 63rd Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Ponce, Cristobal and Wu, Yongxin and Gorrec, Yann Le and Ramirez, Hector},
year={2024},
pages={2676--2681}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Gou Nishida & Yamakita, M. Formal Distributed Port-Hamiltonian Representation of Field Equations. Proceedings of the 44th IEEE Conference on Decision and Control 6009–6015 doi:10.1109/cdc.2005.1583123 – 10.1109/cdc.2005.1583123
- Schoberl, M. & Siuka, A. Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate. 2013 European Control Conference (ECC) 548–553 (2013) doi:10.23919/ecc.2013.6669137 – 10.23919/ecc.2013.6669137
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Thoma, T. & Kotyczka, P. Explicit Port-Hamiltonian FEM-Models for Linear Mechanical Systems with Non-Uniform Boundary Conditions. IFAC-PapersOnLine 55, 499–504 (2022) – 10.1016/j.ifacol.2022.09.144
- Kinon, Port-Hamiltonian formulation and structure-preserving discretization of hyperelastic strings. arXiv preprint arXiv:2304.10957 (2023)
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation ⁎ ⁎This work is supported by the project ANR-16-CE92-0028, entitled Interconnected Infinite-Dimensional systems for Heterogeneous Media, INFIDHEM, financed by the French National Research Agency (ANR). Further information is available at https://websites.isae-supaero.fr/infidhem/the-project/. IFAC-PapersOnLine 51, 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Brugnoli, A., Cardoso-Ribeiro, F. L., Haine, G. & Kotyczka, P. Partitioned finite element method for structured discretization with mixed boundary conditions. IFAC-PapersOnLine 53, 7557–7562 (2020) – 10.1016/j.ifacol.2020.12.1351
- Brugnoli, A., Haine, G. & Matignon, D. Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control. IFAC-PapersOnLine 55, 418–423 (2022) – 10.1016/j.ifacol.2022.11.089
- Brugnoli, A., Rashad, R. & Stramigioli, S. Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus. Journal of Computational Physics 471, 111601 (2022) – 10.1016/j.jcp.2022.111601
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics 231, 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics 373, 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Serhani, A., Matignon, D. & Haine, G. Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems ⁎ ⁎This work is supported by the project ANR-16-CE92-0028, entitled Interconnected Infinite-Dimensional systems for Heterogeneous Media, INFIDHEM, financed by the French National Research Agency (ANR). Further information is available at https://websites.isae-supaero.fr/infidhem/the-project/. IFAC-PapersOnLine 51, 131–136 (2018) – 10.1016/j.ifacol.2018.06.037
- The Finite Element Method: its Basis and Fundamentals. (2013) doi:10.1016/c2009-0-24909-9 – 10.1016/c2009-0-24909-9
- Reddy, Energy principles and variational methods in applied mechanics. (2017)
- Babuška, I. The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973) – 10.1007/bf01436561
- Babuska, I. The Finite Element Method with Penalty. Mathematics of Computation 27, 221 (1973) – 10.2307/2005611
- Embar, A., Dolbow, J. & Harari, I. Imposing Dirichlet boundary conditions with Nitsche’s method and spline‐based finite elements. Numerical Meth Engineering 83, 877–898 (2010) – 10.1002/nme.2863
- Gerstenberger, A. & Wall, W. A. An embedded Dirichlet formulation for 3D continua. Numerical Meth Engineering 82, 537–563 (2009) – 10.1002/nme.2755
- Baiges, J., Codina, R., Henke, F., Shahmiri, S. & Wall, W. A. A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Numerical Meth Engineering 90, 636–658 (2012) – 10.1002/nme.3339
- Lu, K., Augarde, C. E., Coombs, W. M. & Hu, Z. Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries. Computer Methods in Applied Mechanics and Engineering 348, 632–659 (2019) – 10.1016/j.cma.2019.01.035
- Ponce, C., Wu, Y., Le Gorrec, Y. & Ramirez, H. A systematic methodology for port-Hamiltonian modeling of multidimensional flexible linear mechanical systems. Applied Mathematical Modelling 134, 434–451 (2024) – 10.1016/j.apm.2024.05.040
- Liu, C. et al. Optimization of shape control of a cantilever beam using dielectric elastomer actuators. AIP Advances 8, (2018) – 10.1063/1.5026160
- Ponce, C., Ramirez, H. & Gorrec, Y. L. Finite dimensional shape control design of linear port-Hamiltonian systems with in-domain pointwise inputs. IFAC-PapersOnLine 56, 6777–6782 (2023) – 10.1016/j.ifacol.2023.10.385
- Yunhua, L. Explanation and elimination of shear locking and membrane locking with field consistence approach. Computer Methods in Applied Mechanics and Engineering 162, 249–269 (1998) – 10.1016/s0045-7825(97)00346-0
- Viebahn, N., Steeger, K. & Schröder, J. A simple and efficient Hellinger–Reissner type mixed finite element for nearly incompressible elasticity. Computer Methods in Applied Mechanics and Engineering 340, 278–295 (2018) – 10.1016/j.cma.2018.06.001