Formal Distributed Port-Hamiltonian Representation of Field Equations
Authors
Abstract
The purpose of this study is to establish a unified modeling procedure of distributed port-Hamiltonian formulations for field equations. First, higher order Stokes-Dirac structures on variational complexes of jet bundles are introduced. Next, a one-to-one correspondence between Euler-Lagrange equations and distributed port-Hamiltonian systems is presented. Finally, in the case that the Lagrangian is given, the concrete transformation procedure for distributed port-Hamiltonian systems is explained by using two examples.
Citation
- Journal: Proceedings of the 44th IEEE Conference on Decision and Control
- Year: 2006
- Volume:
- Issue:
- Pages: 6009–6015
- Publisher: IEEE
- DOI: 10.1109/cdc.2005.1583123
BibTeX
@inproceedings{Gou_Nishida,
title={{Formal Distributed Port-Hamiltonian Representation of Field Equations}},
DOI={10.1109/cdc.2005.1583123},
booktitle={{Proceedings of the 44th IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Gou Nishida and Yamakita, M.},
pages={6009--6015}
}
References
- Preiswerk, F., Arnold, P., Fasel, B. & Cattin, P. C. Robust tumour tracking from 2D imaging using a population-based statistical motion model. 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis 209–214 (2012) doi:10.1109/mmbia.2012.6164749 – 10.1109/mmbia.2012.6164749
- Olver, P. J. Equivalence, Invariants and Symmetry. (1995) doi:10.1017/cbo9780511609565 – 10.1017/cbo9780511609565
- lifshitz, The Classical Theory of Fields. Course of Theoretical Physics Series (1980)
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Saunders, D. J. The Geometry of Jet Bundles. (1989) doi:10.1017/cbo9780511526411 – 10.1017/cbo9780511526411
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Nishida, G. & Yamakita, M. A higher order Stokes-Dirac structure for distributed-parameter port-Hamiltonian systems. Proceedings of the 2004 American Control Conference 5004–5009 vol.6 (2004) doi:10.23919/acc.2004.1384643 – 10.23919/acc.2004.1384643
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems I. Modeling. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3762-3767 Vol.4 (2004) doi:10.1109/cdc.2004.1429324 – 10.1109/cdc.2004.1429324
- lopezlena, On distributed Port-Hamiltonian process systems. NOLCOS 2004 (2004)
- eberard, An extension of port Hamiltonian systems with boundary energy flow to irreversible systems: The example of heat conduction. NOLCOS 2004 (2004)
- maschke, From Conservation Laws to Port-Hamiltonian Representations of Distributed-Parameter Systems. Proc IFAC World Cong (2005)
- eberard, Conservative Systems with Ports on Contact Manifolds. Proc IFAC World Cong (2005)