Scalable Reduction of Elastic Continuum for Boundary Energy Control
Authors
Gou Nishida, Kenji Fujimoto, Daiji Ichishima
Abstract
This paper derives a scalable reduction of an elastic continuum for boundary energy control methods in terms of the statistical identification of coarse-grained molecular dynamics. Such an identified molecular dynamics, called renormalized molecular dynamics, is used for fast numerical calculations as well as for modeling large targets, even though the numerical molecular dynamics calculations are very time-consuming. The coarse graining can be described as a parameter scaling in the Hamiltonian system of renormalized molecular dynamics, and thus a renormalized Hamiltonian system can be defined by the scalable Hamiltonian. At the inverse limit of the coarse graining, the renormalized Hamiltonian system can be transformed into a distributed port-Hamiltonian system that is a formal representation of partial differential equations for boundary controls based on energy flows. By introducing the concept of the controls to each coarse graining level, the renormalized Hamiltonian systems can be used as a scalabl…
Citation
- Journal: SIAM Journal on Control and Optimization
- Year: 2015
- Volume: 53
- Issue: 4
- Pages: 2424–2448
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/11084529x
BibTeX
@article{Nishida_2015,
title={{Scalable Reduction of Elastic Continuum for Boundary Energy Control}},
volume={53},
ISSN={1095-7138},
DOI={10.1137/11084529x},
number={4},
journal={SIAM Journal on Control and Optimization},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Nishida, Gou and Fujimoto, Kenji and Ichishima, Daiji},
year={2015},
pages={2424--2448}
}
References
- Willems, J. Terminals and Ports. IEEE Circuits and Systems Magazine vol. 10 8–26 (2010) – 10.1109/mcas.2010.938635
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Schlacher, K. Mathematical modeling for nonlinear control: a Hamiltonian approach. Mathematics and Computers in Simulation vol. 79 829–849 (2008) – 10.1016/j.matcom.2008.02.011
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Voss, T. & Scherpen, J. M. A. Structure Preserving Spatial Discretization of a 1-D Piezoelectric Timoshenko Beam. Multiscale Modeling & Simulation vol. 9 129–154 (2011) – 10.1137/100789038
- Pasumarthy, R., Ambati, V. R. & van der Schaft, A. J. Port-Hamiltonian discretization for open channel flows. Systems & Control Letters vol. 61 950–958 (2012) – 10.1016/j.sysconle.2012.05.003
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Rudd, R. E. & Broughton, J. Q. Coarse-grained molecular dynamics and the atomic limit of finite elements. Physical Review B vol. 58 R5893–R5896 (1998) – 10.1103/physrevb.58.r5893
- Noid, W. G. et al. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. The Journal of Chemical Physics vol. 128 (2008) – 10.1063/1.2938860
- Izvekov, S. & Voth, G. A. Multiscale coarse graining of liquid-state systems. The Journal of Chemical Physics vol. 123 (2005) – 10.1063/1.2038787
- Scherpen, J. M. A. Balancing for nonlinear systems. Systems & Control Letters vol. 21 143–153 (1993) – 10.1016/0167-6911(93)90117-o
- Gray W.S., Systems Control Lett. (2006)
- Fujimoto, K. & Scherpen, J. M. A. Balanced Realization and Model Order Reduction for Nonlinear Systems Based on Singular Value Analysis. SIAM Journal on Control and Optimization vol. 48 4591–4623 (2010) – 10.1137/070695332
- FUJIMOTO, K. Balanced Realization and Model Order Reduction for Port-Hamiltonian Systems. Journal of System Design and Dynamics vol. 2 694–702 (2008) – 10.1299/jsdd.2.694
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Jeltsema, D. & Van Der Schaft, A. J. Lagrangian and Hamiltonian formulation of transmission line systems with boundary energy flow. Reports on Mathematical Physics vol. 63 55–74 (2009) – 10.1016/s0034-4877(09)00009-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036
- Diagne M., Washington, DC (2011)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice vol. 19 321–334 (2011) – 10.1016/j.conengprac.2010.10.005