Structure Preserving Spatial Discretization of a 1-D Piezoelectric Timoshenko Beam
Authors
Abstract
In this paper we show how to spatially discretize a distributed model of a piezoelectric beam representing the dynamics of an inflatable space reflector in port-Hamiltonian (pH) form. This model can then be used to design a controller for the shape of the inflatable structure. Inflatable structures have very nice properties, suitable for aerospace applications, e.g., inflatable space reflectors. With this technology we can build inflatable reflectors which are about 100 times bigger than solid ones. But to be useful for telescopes we have to achieve the desired surface accuracy by actively controlling the surface of the inflatable. The starting point of the control design is modeling for control. In this paper we choose lumped pH modeling since these models offer a clear structure for control design. To be able to design a finite dimensional controller for the infinite dimensional system we need a finite dimensional approximation of the infinite dimensional system which inherits all the structural propert…
Citation
- Journal: Multiscale Modeling & Simulation
- Year: 2011
- Volume: 9
- Issue: 1
- Pages: 129–154
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/100789038
BibTeX
@article{Voss_2011,
title={{Structure Preserving Spatial Discretization of a 1-D Piezoelectric Timoshenko Beam}},
volume={9},
ISSN={1540-3467},
DOI={10.1137/100789038},
number={1},
journal={Multiscale Modeling & Simulation},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Voss, T. and Scherpen, J. M. A.},
year={2011},
pages={129--154}
}
References
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Ding, J. & Zhou, A. Structure preserving finite element approximations of Markov operators. Nonlinearity vol. 15 923–936 (2002) – 10.1088/0951-7715/15/3/324
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Ide, T. Some energy preserving finite element schemes based on the discrete variational derivative method. Applied Mathematics and Computation vol. 175 277–296 (2006) – 10.1016/j.amc.2005.07.031
- Lawrence, J., Patel, A. B. & Brisson, J. G. The thermal conductivity of Kapton HN between 0.5 and 5 K. Cryogenics vol. 40 203–207 (2000) – 10.1016/s0011-2275(00)00028-x
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Timoshenko, S. P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science vol. 41 744–746 (1921) – 10.1080/14786442108636264
- Timoshenko, S. P. X. On the transverse vibrations of bars of uniform cross-section. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science vol. 43 125–131 (1922) – 10.1080/14786442208633855
- Van der Schaft A., AEU. Archiv für Elektronik und Übertragungstechnik (1995)