Optimal control of port-Hamiltonian systems: Energy, entropy, and exergy
Authors
Friedrich M. Philipp, Manuel Schaller, Karl Worthmann, Timm Faulwasser, Bernhard Maschke
Abstract
We consider irreversible and coupled reversible–irreversible nonlinear port-Hamiltonian systems and the respective sets of thermodynamic equilibria. In particular, we are concerned with optimal state transitions and output stabilization on finite-time horizons. We analyze a class of optimal control problems, where the performance functional can be interpreted as a linear combination of energy supply, entropy generation, or exergy supply. Our results establish the integral turnpike property towards the set of thermodynamic equilibria providing a rigorous connection of optimal system trajectories to optimal steady states. Throughout the paper, we illustrate our findings by means of two examples: a network of heat exchangers and a gas-piston system.
Keywords
Energy; Entropy; Exergy; Port-Hamiltonian systems; Optimal control; Turnpike property; Manifold turnpike; Thermodynamics; Dissipativity; Passivity
Citation
- Journal: Systems & Control Letters
- Year: 2024
- Volume: 194
- Issue:
- Pages: 105942
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2024.105942
BibTeX
@article{Philipp_2024,
title={{Optimal control of port-Hamiltonian systems: Energy, entropy, and exergy}},
volume={194},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2024.105942},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Philipp, Friedrich M. and Schaller, Manuel and Worthmann, Karl and Faulwasser, Timm and Maschke, Bernhard},
year={2024},
pages={105942}
}
References
- Duindam, (2009)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Faulwasser, (2023)
- Schaller, M., Philipp, F., Faulwasser, T., Worthmann, K. & Maschke, B. Control of port-Hamiltonian systems with minimal energy supply. European Journal of Control vol. 62 33–40 (2021) – 10.1016/j.ejcon.2021.06.017
- Faulwasser, T., Maschke, B., Philipp, F., Schaller, M. & Worthmann, K. Optimal Control of Port-Hamiltonian Descriptor Systems with Minimal Energy Supply. SIAM Journal on Control and Optimization vol. 60 2132–2158 (2022) – 10.1137/21m1427723
- Philipp, F., Schaller, M., Faulwasser, T., Maschke, B. & Worthmann, K. Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems. IFAC-PapersOnLine vol. 54 155–160 (2021) – 10.1016/j.ifacol.2021.11.071
- Karsai, A. Manifold turnpikes of nonlinear port-Hamiltonian descriptor systems under minimal energy supply. Mathematics of Control, Signals, and Systems vol. 36 707–728 (2024) – 10.1007/s00498-024-00384-7
- Soledad Aronna, (2024)
- Reis, (2024)
- Hastir, (2024)
- Öttinger, H. C. Nonequilibrium thermodynamics for open systems. Physical Review E vol. 73 (2006) – 10.1103/physreve.73.036126
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control vol. 22 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H. & Le Gorrec, Y. An Overview on Irreversible Port-Hamiltonian Systems. Entropy vol. 24 1478 (2022) – 10.3390/e24101478
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dos Santos Martins, V. S., Dochain, D. & Maschke, B. Some Properties of Conservative Port Contact Systems. IEEE Transactions on Automatic Control vol. 54 2341–2351 (2009) – 10.1109/tac.2009.2028973
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- Alonso, Process systems, passivity and the second law of thermodynamics. Comput. Chem. Eng. (1996)
- Alonso, A. A., Ydstie, B. E. & Banga, J. R. From irreversible thermodynamics to a robust control theory for distributed process systems. Journal of Process Control vol. 12 507–517 (2002) – 10.1016/s0959-1524(01)00017-8
- Ruszkowski, M., Garcia‐Osorio, V. & Ydstie, B. E. Passivity based control of transport reaction systems. AIChE Journal vol. 51 3147–3166 (2005) – 10.1002/aic.10543
- Wang, L., Maschke, B. & van der Schaft, A. J. Stabilization of Control Contact Systems. IFAC-PapersOnLine vol. 48 144–149 (2015) – 10.1016/j.ifacol.2015.10.229
- García-Sandoval, J. P., Hudon, N., Dochain, D. & González-Álvarez, V. Stability analysis and passivity properties of a class of thermodynamic processes: An internal entropy production approach. Chemical Engineering Science vol. 139 261–272 (2016) – 10.1016/j.ces.2015.07.039
- García-Sandoval, J. P., Hudon, N. & Dochain, D. Generalized Hamiltonian representation of thermo-mechanical systems based on an entropic formulation. Journal of Process Control vol. 51 18–26 (2017) – 10.1016/j.jprocont.2016.09.011
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Feedback equivalence of input–output contact systems. Systems & Control Letters vol. 62 475–481 (2013) – 10.1016/j.sysconle.2013.02.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold. IEEE Transactions on Automatic Control vol. 62 1431–1437 (2017) – 10.1109/tac.2016.2572403
- JOHANNESSEN, E. Minimum entropy production rate in plug flow reactors: An optimal control problem solved for SO2 oxidation. Energy vol. 29 2403–2423 (2004) – 10.1016/j.energy.2004.03.033
- De Koeijer, Minimizing entropy production rate in binary tray distillation. Int. J. Thermodyn. (2000)
- Wilhelmsen, Entropy production minimization with optimal control theory. (2015)
- Trélat, E. & Zuazua, E. The turnpike property in finite-dimensional nonlinear optimal control. Journal of Differential Equations vol. 258 81–114 (2015) – 10.1016/j.jde.2014.09.005
- Faulwasser, T. & Grüne, L. Turnpike properties in optimal control. Handbook of Numerical Analysis 367–400 (2022) doi:10.1016/bs.hna.2021.12.011 – 10.1016/bs.hna.2021.12.011
- Damm, T., Grüne, L., Stieler, M. & Worthmann, K. An Exponential Turnpike Theorem for Dissipative Discrete Time Optimal Control Problems. SIAM Journal on Control and Optimization vol. 52 1935–1957 (2014) – 10.1137/120888934
- Maschke, B., Philipp, F., Schaller, M., Worthmann, K. & Faulwasser, T. Optimal control of thermodynamic port-Hamiltonian Systems. IFAC-PapersOnLine vol. 55 55–60 (2022) – 10.1016/j.ifacol.2022.11.028
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Maschke, B. & Kirchhoff, J. Port maps of Irreversible Port Hamiltonian Systems. IFAC-PapersOnLine vol. 56 6796–6800 (2023) – 10.1016/j.ifacol.2023.10.388
- Zeidler, (1988)
- Ramirez, (2012)
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems vol. 12 159–174 (2006) – 10.1080/13873950500068823
- van der Schaft, A. Geometric Modeling for Control of Thermodynamic Systems. Entropy vol. 25 577 (2023) – 10.3390/e25040577
- Libermann, (1987)
- Callen, (1985)
- Zenfari, Observer design for a class of irreversible port Hamiltonian systems. Int. J. Optim. Control: Theor. Appl. (2023)
- Faulwasser, Manifold turnpikes, trims, and symmetries. Math. Control Signals Systems (2022)
- Faulwasser, T., Korda, M., Jones, C. N. & Bonvin, D. On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica vol. 81 297–304 (2017) – 10.1016/j.automatica.2017.03.012
- Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B. & Diehl, M. CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation vol. 11 1–36 (2018) – 10.1007/s12532-018-0139-4
- Goreac, (2024)
- Morrison, P. J. & Updike, M. H. Inclusive curvaturelike framework for describing dissipation: Metriplectic 4-bracket dynamics. Physical Review E vol. 109 (2024) – 10.1103/physreve.109.045202
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107