Geometric Modeling for Control of Thermodynamic Systems
Authors
Abstract
This paper discusses the way that energy and entropy can be regarded as storage functions with respect to supply rates corresponding to the power and thermal ports of the thermodynamic system. Then, this research demonstrates how the factorization of the irreversible entropy production leads to quasi-Hamiltonian formulations, and how this can be used for stability analysis. The Liouville geometry approach to contact geometry is summarized, and how this leads to the definition of port-thermodynamic systems is discussed. This notion is utilized for control by interconnection of thermodynamic systems.
Citation
- Journal: Entropy
- Year: 2023
- Volume: 25
- Issue: 4
- Pages: 577
- Publisher: MDPI AG
- DOI: 10.3390/e25040577
BibTeX
@article{van_der_Schaft_2023,
title={{Geometric Modeling for Control of Thermodynamic Systems}},
volume={25},
ISSN={1099-4300},
DOI={10.3390/e25040577},
number={4},
journal={Entropy},
publisher={MDPI AG},
author={van der Schaft, Arjan},
year={2023},
pages={577}
}
References
- Simoes, A. A., de Diego, D. M., Valcázar, M. L. & de León, M. The Geometry of Some Thermodynamic Systems. Springer Proceedings in Mathematics & Statistics 247–275 (2021) doi:10.1007/978-3-030-77957-3_13 – 10.1007/978-3-030-77957-3_13
- Bravetti, A., Lopez-Monsalvo, C. S. & Nettel, F. Contact symmetries and Hamiltonian thermodynamics. Annals of Physics vol. 361 377–400 (2015) – 10.1016/j.aop.2015.07.010
- Bravetti, A., Lopez-Monsalvo, C. & Nettel, F. Conformal Gauge Transformations in Thermodynamics. Entropy vol. 17 6150–6168 (2015) – 10.3390/e17096150
- de León, M. & Lainz Valcázar, M. Contact Hamiltonian systems. Journal of Mathematical Physics vol. 60 (2019) – 10.1063/1.5096475
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dos Santos Martins, V. S., Dochain, D. & Maschke, B. Some Properties of Conservative Port Contact Systems. IEEE Transactions on Automatic Control vol. 54 2341–2351 (2009) – 10.1109/tac.2009.2028973
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems. Journal of Geometry and Physics vol. 111 169–193 (2017) – 10.1016/j.geomphys.2016.08.018
- Grmela, M. Contact Geometry of Mesoscopic Thermodynamics and Dynamics. Entropy vol. 16 1652–1686 (2014) – 10.3390/e16031652
- Gromov, D. Two Approaches to the Description of the Evolution of Thermodynamic Systems. IFAC-PapersOnLine vol. 49 34–39 (2016) – 10.1016/j.ifacol.2016.10.749
- Gromov, D. & Castaños, F. The geometric structure of interconnected thermo-mechanical systems. IFAC-PapersOnLine vol. 50 582–587 (2017) – 10.1016/j.ifacol.2017.08.083
- Haslach, H. W., Jr. Geometric structure of the non-equilibrium thermodynamics of homogeneous systems. Reports on Mathematical Physics vol. 39 147–162 (1997) – 10.1016/s0034-4877(97)87997-9
- Hudon, N., Guay, M. & Dochain, D. Control design for thermodynamic systems on contact manifolds. IFAC-PapersOnLine vol. 50 588–593 (2017) – 10.1016/j.ifacol.2017.08.084
- Maschke, B. About the lift of irreversible thermodynamic systems to the Thermodynamic Phase Space. IFAC-PapersOnLine vol. 49 40–45 (2016) – 10.1016/j.ifacol.2016.10.751
- Merker, J. & Krüger, M. On a variational principle in thermodynamics. Continuum Mechanics and Thermodynamics vol. 25 779–793 (2012) – 10.1007/s00161-012-0277-2
- MrugaŁa, R. Geometrical formulation of equilibrium phenomenological thermodynamics. Reports on Mathematical Physics vol. 14 419–427 (1978) – 10.1016/0034-4877(78)90010-1
- On equivalence of two metrics in classical thermodynamics. Physica (1984)
- Mrugała, R. Submanifolds in the thermodynamic phase space. Reports on Mathematical Physics vol. 21 197–203 (1985) – 10.1016/0034-4877(85)90059-x
- On contact and metric structures on thermodynamic spaces. RIMS, Kokyuroku (2000)
- On a special family of thermodynamic processes and their invariants. Rep. Math. Phys. (2000)
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- van der Schaft, A. Liouville geometry of classical thermodynamics. Journal of Geometry and Physics vol. 170 104365 (2021) – 10.1016/j.geomphys.2021.104365
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- Weinhold, F. Metric geometry of equilibrium thermodynamics. The Journal of Chemical Physics vol. 63 2479–2483 (1975) – 10.1063/1.431689
- Bravetti, A. Contact geometry and thermodynamics. International Journal of Geometric Methods in Modern Physics vol. 16 1940003 (2019) – 10.1142/s0219887819400036
- Balian, R. & Valentin, P. Hamiltonian structure of thermodynamics with gauge. The European Physical Journal B vol. 21 269–282 (2001) – 10.1007/s100510170202
- Öttinger, H. C. Beyond Equilibrium Thermodynamics. (2005) doi:10.1002/0471727903 – 10.1002/0471727903
- van der Schaft, A. Classical Thermodynamics Revisited: A Systems and Control Perspective. IEEE Control Systems vol. 41 32–60 (2021) – 10.1109/mcs.2021.3092809
- van der Schaft, A. Towards Control by Interconnection of Port-Thermodynamic Systems. IFAC-PapersOnLine vol. 54 25–31 (2021) – 10.1016/j.ifacol.2021.11.050
- Maschke, On the geometric formulation of non-isothermal mass action chemical reaction networks. IFAC-PapersOnLine (2019)
- Wang, L., Maschke, B. & van der Schaft, A. Port-Hamiltonian modeling of non-isothermal chemical reaction networks. Journal of Mathematical Chemistry vol. 56 1707–1727 (2018) – 10.1007/s10910-018-0882-9
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Hill, D. J. & Moylan, P. J. Dissipative Dynamical Systems: Basic Input-Output and State Properties. Journal of the Franklin Institute vol. 309 327–357 (1980) – 10.1016/0016-0032(80)90026-5
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Kondepudi, D. & Prigogine, I. Modern Thermodynamics. (2014) doi:10.1002/9781118698723 – 10.1002/9781118698723
- van der Schaft, A. Cyclo-Dissipativity Revisited. IEEE Transactions on Automatic Control vol. 66 2920–2924 (2021) – 10.1109/tac.2020.3013941
- Ramirez, H. & Le Gorrec, Y. An Overview on Irreversible Port-Hamiltonian Systems. Entropy vol. 24 1478 (2022) – 10.3390/e24101478
- Feinberg, M. The existence and uniqueness of steady states for a class of chemical reaction networks. Archive for Rational Mechanics and Analysis vol. 132 311–370 (1995) – 10.1007/bf00375614
- Horn, F. Necessary and sufficient conditions for complex balancing in chemical kinetics. Archive for Rational Mechanics and Analysis vol. 49 172–186 (1972) – 10.1007/bf00255664
- Horn, F. & Jackson, R. General mass action kinetics. Archive for Rational Mechanics and Analysis vol. 47 81–116 (1972) – 10.1007/bf00251225
- van der Schaft, A., Rao, S. & Jayawardhana, B. On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics. SIAM Journal on Applied Mathematics vol. 73 953–973 (2013) – 10.1137/11085431x
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Maschke, The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Ubertragungstechnik (1995)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Keenan, J. H. Availability and irreversibility in thermodynamics. British Journal of Applied Physics vol. 2 183–192 (1951) – 10.1088/0508-3443/2/7/302
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Ferguson, J., Middleton, R. H. & Donaire, A. Disturbance rejection via control by interconnection of port-Hamiltonian systems. 2015 54th IEEE Conference on Decision and Control (CDC) 507–512 (2015) doi:10.1109/cdc.2015.7402279 – 10.1109/cdc.2015.7402279
- van der Schaft, A. & Maschke, B. Homogeneous Hamiltonian Control Systems Part I: Geometric Formulation. IFAC-PapersOnLine vol. 51 1–6 (2018) – 10.1016/j.ifacol.2018.06.001
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- Ramirez, H., Maschke, B. & Sbarbaro, D. Feedback equivalence of input–output contact systems. Systems & Control Letters vol. 62 475–481 (2013) – 10.1016/j.sysconle.2013.02.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold. IEEE Transactions on Automatic Control vol. 62 1431–1437 (2017) – 10.1109/tac.2016.2572403
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3