Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems
Authors
Friedrich Philipp, Manuel Schaller, Timm Faulwasser, Bernhard Maschke, Karl Worthmann
Abstract
We consider the problem of minimizing the supplied energy of infinite-dimensional linear port-Hamiltonian systems and prove that optimal trajectories exhibit the turnpike phenomenon towards certain subspaces induced by the dissipation of the dynamics. The theoretical foundations are illustrated by means of numerical examples concerning a Timoshenko beam and the heat equation.
Keywords
Optimal control; port-Hamiltonian systems; turnpike properties; dissipativity; infinite-dimensional systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 155–160
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.071
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Philipp_2021,
title={{Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.071},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Philipp, Friedrich and Schaller, Manuel and Faulwasser, Timm and Maschke, Bernhard and Worthmann, Karl},
year={2021},
pages={155--160}
}
References
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Breiten, T. & Pfeiffer, L. On the Turnpike Property and the Receding-Horizon Method for Linear-Quadratic Optimal Control Problems. SIAM Journal on Control and Optimization vol. 58 1077–1102 (2020) – 10.1137/18m1225811
- Carlson, (1991)
- Damm, T., Grüne, L., Stieler, M. & Worthmann, K. An Exponential Turnpike Theorem for Dissipative Discrete Time Optimal Control Problems. SIAM Journal on Control and Optimization vol. 52 1935–1957 (2014) – 10.1137/120888934
- Dardé, J. & Ervedoza, S. On the Reachable Set for the One-Dimensional Heat Equation. SIAM Journal on Control and Optimization vol. 56 1692–1715 (2018) – 10.1137/16m1093215
- Engel, (2000)
- Faulwasser, (2021)
- Faulwasser, T., Grüne, L. & Müller, M. A. Economic Nonlinear Model Predictive Control. Foundations and Trends® in Systems and Control vol. 5 224–409 (2018) – 10.1561/2600000014
- Faulwasser, (2020)
- Faulwasser, T., Korda, M., Jones, C. N. & Bonvin, D. On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica vol. 81 297–304 (2017) – 10.1016/j.automatica.2017.03.012
- Grüne, L. & Müller, M. A. On the relation between strict dissipativity and turnpike properties. Systems & Control Letters vol. 90 45–53 (2016) – 10.1016/j.sysconle.2016.01.003
- Grüne, L., Schaller, M. & Schiela, A. Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated by Model Predictive Control. SIAM Journal on Control and Optimization vol. 57 2753–2774 (2019) – 10.1137/18m1223083
- Grüne, L., Schaller, M. & Schiela, A. Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations. Journal of Differential Equations vol. 268 7311–7341 (2020) – 10.1016/j.jde.2019.11.064
- Grüne, (2021)
- Gugat, M. & Hante, F. M. On the Turnpike Phenomenon for Optimal Boundary Control Problems with Hyperbolic Systems. SIAM Journal on Control and Optimization vol. 57 264–289 (2019) – 10.1137/17m1134470
- Gugat, M., Trélat, E. & Zuazua, E. Optimal Neumann control for the 1D wave equation: Finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Systems & Control Letters vol. 90 61–70 (2016) – 10.1016/j.sysconle.2016.02.001
- Jacob, (2012)
- Porretta, A. & Zuazua, E. Long Time versus Steady State Optimal Control. SIAM Journal on Control and Optimization vol. 51 4242–4273 (2013) – 10.1137/130907239
- Schaller, M., Philipp, F., Faulwasser, T., Worthmann, K. & Maschke, B. Control of port-Hamiltonian systems with minimal energy supply. European Journal of Control vol. 62 33–40 (2021) – 10.1016/j.ejcon.2021.06.017
- Trélat, E. & Zhang, C. Integral and measure-turnpike properties for infinite-dimensional optimal control systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0209-1
- Trélat, E., Zhang, C. & Zuazua, E. Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces. SIAM Journal on Control and Optimization vol. 56 1222–1252 (2018) – 10.1137/16m1097638
- Willems, J. Least squares stationary optimal control and the algebraic Riccati equation. IEEE Transactions on Automatic Control vol. 16 621–634 (1971) – 10.1109/tac.1971.1099831
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced Order LQG Control Design for Infinite Dimensional Port Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 66 865–871 (2021) – 10.1109/tac.2020.2997373