Port maps of Irreversible Port Hamiltonian Systems
Authors
Bernhard Maschke, Jonas Kirchhoff
Abstract
Irreversible Port Hamiltonian Systems are a deviation from Port Hamiltonian Systems which embeds the definition of the irreversible phenomena taking place in the system. They are defined with respect to a quasi-Poisson bracket which ensures the positiveness of the entropy generation and is expressed in terms of the total entropy of the system. The port maps, however, associated with the conjugated port variables, were poorly justified and lacked any physical characterization. In this paper, we suggest a novel definition of the port maps which allows to recover not only the energy balance equation (when the Hamiltonian equals the total energy of the system) but also a entropy balance equation including the irreversible entropy creation term at the interface (the port) of the system in addition to the entropy creation term due to internal irreversible phenomena.
Keywords
Port Hamiltonian Systems; Nonlinear Systems; Irreversible Thermodynamics; Energy and Entropy based Modelling; Geometrical Methods
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 2
- Pages: 6796–6800
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.10.388
- Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023
BibTeX
@article{Maschke_2023,
title={{Port maps of Irreversible Port Hamiltonian Systems}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.10.388},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Maschke, Bernhard and Kirchhoff, Jonas},
year={2023},
pages={6796--6800}
}
References
- Zárate-Navarro, M. A., García-Sandoval, J. P. & Hudon, N. A saturated feedforward/cascade controller for passive continuous reacting systems using entropy production shaping. European Journal of Control vol. 49 53–61 (2019) – 10.1016/j.ejcon.2019.01.006
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Kirchhoff, On the generating functions of Irreversible Port Hamiltonian Systems. (2022)
- Kotyczka, P. & Maschke, B. Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws. at - Automatisierungstechnik vol. 65 308–322 (2017) – 10.1515/auto-2016-0098
- Libermann, (1987)
- Maschke, B., Philipp, F., Schaller, M., Worthmann, K. & Faulwasser, T. Optimal control of thermodynamic port-Hamiltonian Systems. IFAC-PapersOnLine vol. 55 55–60 (2022) – 10.1016/j.ifacol.2022.11.028
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. (1995)
- Morrison, P. J. A paradigm for joined Hamiltonian and dissipative systems. Physica D: Nonlinear Phenomena vol. 18 410–419 (1986) – 10.1016/0167-2789(86)90209-5
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ramirez, H. & Le Gorrec, Y. An Overview on Irreversible Port-Hamiltonian Systems. Entropy vol. 24 1478 (2022) – 10.3390/e24101478
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091