Passivity-Based Observer Design for State Affine Systems Using Interconnection and Damping Assignment
Authors
Bastian Biedermann, Philipp Rosenzweig, Thomas Meurer
Abstract
A passivity-based observer design is presented for state affine systems. The observer convergence is addressed by systematically determining the output injection so that the observer error dynamics takes the form of an autonomous, passive port-Hamiltonian system. In this respect, the design resembles the interconnection and damping assignment passivity-based controller (IDA - PBC) used for the feedback stabilization of port-Hamiltonian systems. The observer performance is analyzed and illustrated in simulation examples.
Citation
- Journal: 2018 IEEE Conference on Decision and Control (CDC)
- Year: 2018
- Volume:
- Issue:
- Pages: 4662–4667
- Publisher: IEEE
- DOI: 10.1109/cdc.2018.8619143
BibTeX
@inproceedings{Biedermann_2018,
title={{Passivity-Based Observer Design for State Affine Systems Using Interconnection and Damping Assignment}},
DOI={10.1109/cdc.2018.8619143},
booktitle={{2018 IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Biedermann, Bastian and Rosenzweig, Philipp and Meurer, Thomas},
year={2018},
pages={4662--4667}
}
References
- Khalil, H. K. & Praly, L. High‐gain observers in nonlinear feedback control. Intl J Robust & Nonlinear 24, 993–1015 (2013) – 10.1002/rnc.3051
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Moreno, J. A. Observer Design for Nonlinear Systems: A Dissipative Approach. IFAC Proceedings Volumes 37, 681–686 (2004) – 10.1016/s1474-6670(17)30549-9
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Contr. 36, 1228–1240 (1991) – 10.1109/9.100932
- Shim, H., Seo, J. H. & Teel, A. R. Nonlinear observer design via passivation of error dynamics. Automatica 39, 885–892 (2003) – 10.1016/s0005-1098(03)00023-2
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica 46, 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Besancon, G. On output transformations for state linearization up to output injection. IEEE Trans. Automat. Contr. 44, 1975–1981 (1999) – 10.1109/9.793789
- hirsch, Differential Equations Dynamical Systems and an Introduction to Chaos (2012)
- Hammouri, H. & Gauthier, J. P. Bilinearization up to output injection. Systems & Control Letters 11, 139–149 (1988) – 10.1016/0167-6911(88)90088-6
- Besancon, G. & Bornard, G. State Equivalence Based Observer Synthesis for Nonlinear Control Systems. IFAC Proceedings Volumes 29, 2167–2172 (1996) – 10.1016/s1474-6670(17)57993-8
- Besançon, G. State-Affine Systems and Observer-Based Control. IFAC Proceedings Volumes 31, 391–396 (1998) – 10.1016/s1474-6670(17)40367-3
- Teel, A. & Praly, L. Tools for Semiglobal Stabilization by Partial State and Output Feedback. SIAM J. Control Optim. 33, 1443–1488 (1995) – 10.1137/s0363012992241430
- Teel, A. & Praly, L. Global stabilizability and observability imply semi-global stabilizability by output feedback. Systems & Control Letters 22, 313–325 (1994) – 10.1016/0167-6911(94)90029-9
- BESTLE, D. & ZEITZ, M. Canonical form observer design for non-linear time-variable systems. International Journal of Control 38, 419–431 (1983) – 10.1080/00207178308933084
- Gauthier, J. P., Hammouri, H. & Othman, S. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Automat. Contr. 37, 875–880 (1992) – 10.1109/9.256352
- Krener, A. J. & Isidori, A. Linearization by output injection and nonlinear observers. Systems & Control Letters 3, 47–52 (1983) – 10.1016/0167-6911(83)90037-3
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian observer design for plasma profile estimation in tokamaks. IFAC-PapersOnLine 49, 93–98 (2016) – 10.1016/j.ifacol.2016.10.761
- van der schaft, Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians (2006)
- Moreno, J. A. Proportional-Integral Observer design for nonlinear systems. 2008 47th IEEE Conference on Decision and Control 2308–2313 (2008) doi:10.1109/cdc.2008.4739282 – 10.1109/cdc.2008.4739282
- Freund, E. Zeitvariable Mehrgrößensysteme. (Springer Berlin Heidelberg, 1971). doi:10.1007/978-3-642-48185-7 – 10.1007/978-3-642-48185-7
- van der schaft, Port-Hamiltonian systems on graphs. SIAM Journal on Control and Optimization (2011)
- Lorenz, E. N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 20, 130–141 (1963) – 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005