Dual observer-based compensator design for linear port-Hamiltonian systems
Authors
Abstract
We show how dual observer-based compensator design can be adapted to linear, finite-dimensional systems in port-Hamiltonian (pH) form. Based on the recent formulation of Luenberger’s approach in a two-degrees-of-freedom controller structure, we consider the dynamics of both plant and dynamic controller in linear pH form. The main differences compared to the standard linear case are (i) the expression of the invariant manifold in terms of co-energy variables and (ii) the stability proof via the definiteness of energy and dissipation matrices. To this end, the formulation of well-known LMI conditions for the stabilization of linear pH systems is adapted to the considered (dual) problem. The approach marks a preliminary step for the work on the nonlinear pH setting. Simulation and experimental results with a magnetic levitation device using only distance feedback illustrate the applicability of the approach.
Citation
- Journal: 2015 European Control Conference (ECC)
- Year: 2015
- Volume:
- Issue:
- Pages: 2908–2913
- Publisher: IEEE
- DOI: 10.1109/ecc.2015.7330979
BibTeX
@inproceedings{Kotyczka_2015,
title={{Dual observer-based compensator design for linear port-Hamiltonian systems}},
DOI={10.1109/ecc.2015.7330979},
booktitle={{2015 European Control Conference (ECC)}},
publisher={IEEE},
author={Kotyczka, Paul and Mei Wang},
year={2015},
pages={2908--2913}
}
References
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Prajna, S., van der Schaft, A. & Meinsma, G. An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Systems & Control Letters 45, 371–385 (2002) – 10.1016/s0167-6911(01)00195-5
- van der schaft, Port-Hamiltonian systems: An introductory survey. Proc Int Congr Mathematicians Madrid (2006)
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Trans. Automat. Contr. 55, 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica 46, 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Karagiannis, D., Carnevale, D. & Astolfi, A. Invariant Manifold Based Reduced-Order Observer Design for Nonlinear Systems. IEEE Trans. Automat. Contr. 53, 2602–2614 (2008) – 10.1109/tac.2008.2007045
- Deutscher, J. Dual observer‐based compensators for nonlinear systems. Intl J Robust & Nonlinear 24, 110–122 (2012) – 10.1002/rnc.2877
- Kotyczka, P. Local linear dynamics assignment in IDA-PBC. Automatica 49, 1037–1044 (2013) – 10.1016/j.automatica.2013.01.028
- kotyczka, Transparente Dynamikvorgabe bei der nichtlinearen pas-sivitdtsbasierten Zustandsregelung (2010)
- Luenberger, D. An introduction to observers. IEEE Trans. Automat. Contr. 16, 596–602 (1971) – 10.1109/tac.1971.1099826
- Lofberg, J. YALMIP : a toolbox for modeling and optimization in MATLAB. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508) 284–289 doi:10.1109/cacsd.2004.1393890 – 10.1109/cacsd.2004.1393890
- Astolfi, A., Ortega, R. & Venkatraman, A. A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica 46, 182–189 (2010) – 10.1016/j.automatica.2009.10.027
- Astolfi, A. & Ortega, R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Automat. Contr. 48, 590–606 (2003) – 10.1109/tac.2003.809820
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3768-3773 Vol.4 (2004) doi:10.1109/cdc.2004.1429325 – 10.1109/cdc.2004.1429325