Linear Matrix Inequality Design of Exponentially Stabilizing Observer-Based State Feedback Port-Hamiltonian Controllers
Authors
Jesus Pablo Toledo Zucco, Hector Ramirez, Yongxin Wu, Yann Le Gorrec
Abstract
The design of an observer-based state feedback controller with guaranteed passivity properties for port-Hamiltonian systems (PHS) is addressed using linear matrix inequalities (LMIs). The observer gain is freely chosen and the LMIs conditions such that the state feedback is equivalent to control by interconnection with an input strictly passive and/or an output strictly passive and zero-state detectable port-Hamiltonian controller are established. It is shown that the proposed controller exponentially stabilizes a class of infinite-dimensional PHS and asymptotically stabilizes a class of finite-dimensional nonlinear PHS. A Timoshenko beam model and a microelectromechanical system are used to illustrate the proposed approach.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2023
- Volume: 68
- Issue: 10
- Pages: 6184–6191
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2022.3227927
BibTeX
@article{Zucco_2023,
title={{Linear Matrix Inequality Design of Exponentially Stabilizing Observer-Based State Feedback Port-Hamiltonian Controllers}},
volume={68},
ISSN={2334-3303},
DOI={10.1109/tac.2022.3227927},
number={10},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Zucco, Jesus Pablo Toledo and Ramirez, Hector and Wu, Yongxin and Le Gorrec, Yann},
year={2023},
pages={6184--6191}
}
References
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Prajna, S., van der Schaft, A. & Meinsma, G. An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Systems & Control Letters vol. 45 371–385 (2002) – 10.1016/s0167-6911(01)00195-5
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Kotyczka, P. & Mei Wang. Dual observer-based compensator design for linear port-Hamiltonian systems. 2015 European Control Conference (ECC) 2908–2913 (2015) doi:10.1109/ecc.2015.7330979 – 10.1109/ecc.2015.7330979
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica vol. 46 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian observer design for plasma profile estimation in tokamaks. IFAC-PapersOnLine vol. 49 93–98 (2016) – 10.1016/j.ifacol.2016.10.761
- Yaghmaei, A. & Yazdanpanah, M. J. Structure Preserving Observer Design for Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 64 1214–1220 (2019) – 10.1109/tac.2018.2847904
- Biedermann, B., Rosenzweig, P. & Meurer, T. Passivity-Based Observer Design for State Affine Systems Using Interconnection and Damping Assignment. 2018 IEEE Conference on Decision and Control (CDC) 4662–4667 (2018) doi:10.1109/cdc.2018.8619143 – 10.1109/cdc.2018.8619143
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced order LQG control design for port Hamiltonian systems. Automatica vol. 95 86–92 (2018) – 10.1016/j.automatica.2018.05.003
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced Order LQG Control Design for Infinite Dimensional Port Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 66 865–871 (2021) – 10.1109/tac.2020.2997373
- Toledo, J., Wu, Y., Ramírez, H. & Le Gorrec, Y. Observer-based boundary control of distributed port-Hamiltonian systems. Automatica vol. 120 109130 (2020) – 10.1016/j.automatica.2020.109130
- Toledo, J., Wu, Y., Ramirez, H. & Gorrec, Y. L. Observer-Based State Feedback Controller for a class of Distributed Parameter Systems. IFAC-PapersOnLine vol. 52 114–119 (2019) – 10.1016/j.ifacol.2019.08.020
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Kottenstette, N., McCourt, M. J., Xia, M., Gupta, V. & Antsaklis, P. J. On relationships among passivity, positive realness, and dissipativity in linear systems. Automatica vol. 50 1003–1016 (2014) – 10.1016/j.automatica.2014.02.013
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Borovic, B., Hong, C., Liu, A. Q., Xie, L. & Lewis, F. L. Control of a MEMS optical switch. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3039-3044 Vol.3 (2004) doi:10.1109/cdc.2004.1428930 – 10.1109/cdc.2004.1428930
- Venkatraman, A. & van der Schaft, A. Energy Shaping of Port-Hamiltonian Systems by Using Alternate Passive Input-Output Pairs. European Journal of Control vol. 16 665–677 (2010) – 10.3166/ejc.16.665-677