A Port Hamiltonian approach to dynamical chemical process systems network modeling and analysis
Authors
Dereje Tamiru Tefera, Stevan Dubljevic, Vinay Prasad
Abstract
This work focuses on the investigation of the applicability of port Hamiltonian systems (PHS) approach to model chemical process plant systems and the generalization of the PHS originally proposed for reversible thermodynamic systems to irreversible thermodynamic system characterized by coupled physicochemical phenomenon and significant irreversible entropy generation. To this end, the first part of this work presents a definition and analysis of the proposed generalized class of conservative pseudo port Hamiltonian system for general open multi-input multi-output (MIMO) irreversible thermodynamic system. In the second part of the work, the generalized PHS approach is applied to multiphase process systems with coupled irreversible entropy generation. The proposed modeling framework is extended to model chemical process systems network with recycle, which is prevalent in chemical process plants.
Keywords
Port Hamiltonian systems; Process systems modeling; Irreversible thermodynamic systems; Entropy; Chemical reactor; Process Systems Network; Heat exchanger; Reactive distillation
Citation
- Journal: Chemical Engineering Science
- Year: 2022
- Volume: 261
- Issue:
- Pages: 117907
- Publisher: Elsevier BV
- DOI: 10.1016/j.ces.2022.117907
BibTeX
@article{Tefera_2022,
title={{A Port Hamiltonian approach to dynamical chemical process systems network modeling and analysis}},
volume={261},
ISSN={0009-2509},
DOI={10.1016/j.ces.2022.117907},
journal={Chemical Engineering Science},
publisher={Elsevier BV},
author={Tefera, Dereje Tamiru and Dubljevic, Stevan and Prasad, Vinay},
year={2022},
pages={117907}
}
References
- Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control vol. 50 1936–1955 (2005) – 10.1109/tac.2005.860292
- Adeyinka, O. B. & Naterer, G. F. APPARENT ENTROPY PRODUCTION DIFFERENCE WITH HEAT AND FLUID FLOW IRREVERSIBILITIES. Numerical Heat Transfer, Part B: Fundamentals vol. 42 411–436 (2002) – 10.1080/10407790190054012
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Aris, R. Prolegomena to the rational analysis of systems of chemical reactions. Archive for Rational Mechanics and Analysis vol. 19 81–99 (1965) – 10.1007/bf00282276
- Baldea, M. & Daoutidis, P. Model reduction and control of reactor–heat exchanger networks. Journal of Process Control vol. 16 265–274 (2006) – 10.1016/j.jprocont.2005.06.007
- Baldea, M., Daoutidis, P. & Kumar, A. Dynamics and control of integrated networks with purge streams. AIChE Journal vol. 52 1460–1472 (2006) – 10.1002/aic.10756
- Bejan, (2016)
- Bogle, I. D. L. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers. Engineering vol. 3 161–165 (2017) – 10.1016/j.eng.2017.02.003
- Breedveld, P. C. Port-based modeling of mechatronic systems. Mathematics and Computers in Simulation vol. 66 99–128 (2004) – 10.1016/j.matcom.2003.11.002
- Cervera, On composition of Dirac structures and its implications for control by interconnection. (2003)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Coffey, D. P., Erik Ydstie, B. & Farschman, C. A. Distillation stability using passivity and thermodynamics. Computers & Chemical Engineering vol. 24 317–322 (2000) – 10.1016/s0098-1354(00)00467-1
- De Groot, Non-equilibrium thermodynamics. Courier Corporation (2013)
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Duindam, (2009)
- Fang, G. & Ward, C. A. Temperature measured close to the interface of an evaporating liquid. Physical Review E vol. 59 417–428 (1999) – 10.1103/physreve.59.417
- Favache, A. & Dochain, D. Power-shaping control of reaction systems: The CSTR case. Automatica vol. 46 1877–1883 (2010) – 10.1016/j.automatica.2010.07.011
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Gilles, E. D. Network Theory for Chemical Processes. Chemical Engineering & Technology vol. 21 121–132 (1998) – 10.1002/(sici)1521-4125(199802)21:2<211::aid-ceat121>3.0.co;2-u
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, H., Couenne, F., Dochain, D. & Le Gorrec, Y. From Brayton-Moser formulation to Port Hamiltonian representation: the CSTR case study. IFAC Proceedings Volumes vol. 44 1628–1633 (2011) – 10.3182/20110828-6-it-1002.02464
- Ngoc-Ha Hoang, Du Juan & Ydstie, B. E. On the passivity of inventory control in the Port Hamiltonian framework. 2013 American Control Conference 1639–1644 (2013) doi:10.1109/acc.2013.6580070 – 10.1109/acc.2013.6580070
- Jillson, K. & Ydstie, B. E. COMPLEX PROCESS NETWORKS: PASSIVITY AND OPTIMALITY. IFAC Proceedings Volumes vol. 38 543–548 (2005) – 10.3182/20050703-6-cz-1902.01664
- Kondepudi, (2014)
- Luyben, (2009)
- Mahmud, S. & Fraser, R. A. The second law analysis in fundamental convective heat transfer problems. International Journal of Thermal Sciences vol. 42 177–186 (2003) – 10.1016/s1290-0729(02)00017-0
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Maschke, B. M. & van der Schaft, A. J. A Hamiltonian approach to stabilization of nonholonomic mechanical systems. Proceedings of 1994 33rd IEEE Conference on Decision and Control vol. 3 2950–2954 – 10.1109/cdc.1994.411344
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Morud, J. & Skogestad, S. Dynamic behaviour of integrated plants. Journal of Process Control vol. 6 145–156 (1996) – 10.1016/0959-1524(95)00045-3
- Müller, I. & Weiss, W. Thermodynamics of irreversible processes — past and present. The European Physical Journal H vol. 37 139–236 (2012) – 10.1140/epjh/e2012-20029-1
- P. Niemiec, M. & Kravaris, C. Nonlinear model-state feedback control for nonminimum-phase processes. Automatica vol. 39 1295–1302 (2003) – 10.1016/s0005-1098(03)00103-1
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Transactions on Automatic Control vol. 48 1762–1767 (2003) – 10.1109/tac.2003.817918
- Öttinger, H. C. & Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Physical Review E vol. 56 6633–6655 (1997) – 10.1103/physreve.56.6633
- Özkan, L. & Ydstie, B. E. Towards A General Stability Analysis of Process Network Systems. IFAC-PapersOnLine vol. 52 39–44 (2019) – 10.1016/j.ifacol.2019.07.007
- Pearson, Nonlinear process identification. Nonlinear Process Control (1997)
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control vol. 19 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Rant, Exergy, a new word for technical available work. Forsch. Ing. Wis (1956)
- Romo-Hernández, A., Hudon, N., Ydstie, B. E. & Dochain, D. Thermodynamic Analysis and Feedback Stabilization for Irreversible Liquid–Vapor Systems. Industrial & Engineering Chemistry Research vol. 59 2252–2260 (2020) – 10.1021/acs.iecr.9b04869
- Sandler, (2017)
- Seider, (1999)
- Van der Schaft, The hamiltonian formulation of energy conserving physical systems with external ports. Archiv fur Elektronik und Ubertragungstechnik (1995)
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- Wall, K. Complexity of chemical products, plants, processes and control systems. Chemical Engineering Research and Design vol. 87 1430–1437 (2009) – 10.1016/j.cherd.2009.03.007
- Wang, L., Maschke, B. & van der Schaft, A. Irreversible port-Hamiltonian Approach to Modeling and Analyzing of Non-isothermal Chemical Reaction Networks. IFAC-PapersOnLine vol. 49 134–139 (2016) – 10.1016/j.ifacol.2016.12.115
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493