Energy-based modeling for field–circuit coupling
Authors
Robert Altmann, Idoia Cortes Garcia, Elias Paakkunainen, Philipp Schulze, Sebastian Schöps
Abstract
This paper presents a generalized energy-based modeling framework extending recent formulations tailored for differential–algebraic equations. The proposed structure, inspired by the port-Hamiltonian formalism, ensures passivity, preserves the power balance, and facilitates the consistent interconnection of subsystems. A particular focus is put on low-frequency power applications in electrical engineering. Stranded, solid, and foil conductor models are investigated in the context of the eddy current problem. Each conductor model is shown to fit into the generalized energy-based structure, which allows their structure-preserving coupling with electrical circuits described by modified nodal analysis. Theoretical developments are validated through a numerical simulation of an oscillator circuit, demonstrating energy conservation in lossless scenarios and controlled dissipation when eddy currents are present. The applicability of the methodology towards engineering applications is studied through a numerical simulation of a nonlinear three-phase transformer.
Keywords
conductor model, differential–algebraic equations, eddy current problem, energy-based modeling, field–circuit problem, three-phase transformer
Citation
- Journal: Applied Mathematical Modelling
- Year: 2026
- Volume: 155
- Issue:
- Pages: 116688
- Publisher: Elsevier BV
- DOI: 10.1016/j.apm.2025.116688
BibTeX
@article{Altmann_2026,
title={{Energy-based modeling for field–circuit coupling}},
volume={155},
ISSN={0307-904X},
DOI={10.1016/j.apm.2025.116688},
journal={Applied Mathematical Modelling},
publisher={Elsevier BV},
author={Altmann, Robert and Cortes Garcia, Idoia and Paakkunainen, Elias and Schulze, Philipp and Schöps, Sebastian},
year={2026},
pages={116688}
}References
- Mehrmann V, Unger B (2023) Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32:395–515. https://doi.org/10.1017/s096249292200008 – 10.1017/s0962492922000083
- Control 1(2–3):173–378. https://doi.org/10.1561/260000000 – 10.1561/2600000002
- Fiaz S, Zonetti D, Ortega R, Scherpen JMA, van der Schaft AJ (2013) A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control 19(6):477–485. https://doi.org/10.1016/j.ejcon.2013.09.00 – 10.1016/j.ejcon.2013.09.002
- van der Schaft, Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. (2004)
- Malan AJ, Rausche L, Strehle F, Hohmann S (2023) Port-Hamiltonian Modelling for Analysis and Control of Gas Networks. IFAC-PapersOnLine 56(2):5431–5437. https://doi.org/10.1016/j.ifacol.2023.10.19 – 10.1016/j.ifacol.2023.10.193
- van der Schaft A (2020) Port-Hamiltonian Modeling for Control. Annu Rev Control Robot Auton Syst 3(1):393–416. https://doi.org/10.1146/annurev-control-081219-09225 – 10.1146/annurev-control-081219-092250
- Hoang H, Couenne F, Jallut C, Le Gorrec Y (2011) The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control 21(10):1449–1458. https://doi.org/10.1016/j.jprocont.2011.06.01 – 10.1016/j.jprocont.2011.06.014
- Tefera DT, Dubljevic S, Prasad V (2022) A Port Hamiltonian approach to dynamical chemical process systems network modeling and analysis. Chemical Engineering Science 261:117907. https://doi.org/10.1016/j.ces.2022.11790 – 10.1016/j.ces.2022.117907
- Farle, A port-Hamiltonian finite-element formulation for the Maxwell equations. (2013)
- Haine, Structure-preserving discretization of Maxwell’s equations as a port-Hamiltonian system. (2022)
- Gernandt H, Haller FE, Reis T, Schaft AJ van der (2021) Port-Hamiltonian formulation of nonlinear electrical circuits. Journal of Geometry and Physics 159:103959. https://doi.org/10.1016/j.geomphys.2020.10395 – 10.1016/j.geomphys.2020.103959
- Bartel, Port-Hamiltonian systems’ modelling in electrical engineering. (2021)
- Macchelli A, Melchiorri C (2004) Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J Control Optim 43(2):743–767. https://doi.org/10.1137/s036301290342953 – 10.1137/s0363012903429530
- Warsewa A, Böhm M, Sawodny O, Tarín C (2021) A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Applied Mathematical Modelling 89:1528–1546. https://doi.org/10.1016/j.apm.2020.07.03 – 10.1016/j.apm.2020.07.038
- Rashad, The port-Hamiltonian structure of continuum mechanics. J. Nonlinear Sci. (2025)
- Altmann R, Schulze P (2017) A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters 100:51–55. https://doi.org/10.1016/j.sysconle.2016.12.00 – 10.1016/j.sysconle.2016.12.005
- Kotyczka P, Lefèvre L (2019) Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters 133:104530. https://doi.org/10.1016/j.sysconle.2019.10453 – 10.1016/j.sysconle.2019.104530
- Brugnoli A, Rashad R, Stramigioli S (2022) Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus. Journal of Computational Physics 471:111601. https://doi.org/10.1016/j.jcp.2022.11160 – 10.1016/j.jcp.2022.111601
- Giesselmann J, Karsai A, Tscherpel T (2025) Energy-consistent Petrov–Galerkin time discretization of port-Hamiltonian systems. The SMAI Journal of computational mathematics 11:335–367. https://doi.org/10.5802/smai-jcm.12 – 10.5802/smai-jcm.127
- Breiten T, Morandin R, Schulze P (2022) Error bounds for port-Hamiltonian model and controller reduction based on system balancing. Computers & Mathematics with Applications 116:100–115. https://doi.org/10.1016/j.camwa.2021.07.02 – 10.1016/j.camwa.2021.07.022
- Gugercin S, Polyuga RV, Beattie C, van der Schaft A (2012) Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48(9):1963–1974. https://doi.org/10.1016/j.automatica.2012.05.05 – 10.1016/j.automatica.2012.05.052
- Altmann R, Schulze P (2025) A novel energy-based modeling framework. Math Control Signals Syst 37(2):395–414. https://doi.org/10.1007/s00498-024-00405- – 10.1007/s00498-024-00405-5
- Beattie C, Mehrmann V, Xu H, Zwart H (2018) Linear port-Hamiltonian descriptor systems. Math Control Signals Syst 30(4). https://doi.org/10.1007/s00498-018-0223- – 10.1007/s00498-018-0223-3
- Mehrmann, Structure-preserving discretization for port-Hamiltonian descriptor systems. (2019)
- Mehl C, Mehrmann V, Wojtylak M (2018) Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM J Matrix Anal & Appl 39(3):1489–1519. https://doi.org/10.1137/18m116427 – 10.1137/18m1164275
- Arkkio, (1987)
- Bortot L, Auchmann B, Garcia IC, Navarro AMF, Maciejewski M, Mentink M, Prioli M, Ravaioli E, Schps S, Verweij AP (2018) STEAM: A Hierarchical Cosimulation Framework for Superconducting Accelerator Magnet Circuits. IEEE Trans Appl Supercond 28(3):1–6. https://doi.org/10.1109/tasc.2017.278766 – 10.1109/tasc.2017.2787665
- Bedrosian G (1993) A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans Magn 29(2):1664–1668. https://doi.org/10.1109/20.25072 – 10.1109/20.250726
- De Gersem H, Hameyer K (2001) A finite element model for foil winding simulation. IEEE Trans Magn 37(5):3427–3432. https://doi.org/10.1109/20.95262 – 10.1109/20.952629
- Schöps S, De Gersem H, Weiland T (2013) Winding functions in transient magnetoquasistatic field-circuit coupled simulations. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 32(6):2063–2083. https://doi.org/10.1108/compel-01-2013-000 – 10.1108/compel-01-2013-0004
- Paakkunainen E, Bundschuh J, Garcia IC, De Gersem H, Schöps S (2024) A Stabilized Circuit-Consistent Foil Conductor Model. IEEE Access 12:1408–1417. https://doi.org/10.1109/access.2023.334667 – 10.1109/access.2023.3346677
- Est�vez Schwarz D, Tischendorf C (2000) Structural analysis of electric circuits and consequences for MNA. Int J Circ Theor Appl 28(2):131–162. https://doi.org/10.1002/(sici)1097-007x(200003/04)28:2<131::aid-cta100>3.0.co;2- – 10.1002/(sici)1097-007x(200003/04)28:2<131::aid-cta100>3.0.co;2-w
- Bartel, Structural analysis of electrical circuits including magnetoquasistatic devices. APNUM (2011)
- Cortes Garcia, Systems of differential algebraic equations in computational electromagnetics. (2019)
- Egger H, Habrich O, Shashkov V (2020) On the Energy Stable Approximation of Hamiltonian and Gradient Systems. Computational Methods in Applied Mathematics 21(2):335–349. https://doi.org/10.1515/cmam-2020-002 – 10.1515/cmam-2020-0025
- Jackson, (1998)
- Emson CRI, Trowbridge CW (1988) Transient 3D eddy currents using modified magnetic vector potentials and magnetic scalar potentials. IEEE Trans Magn 24(1):86–89. https://doi.org/10.1109/20.4386 – 10.1109/20.43862
- Albanese, Integral formulation for 3D eddy-current computation using edge elements. IEE Proc. Sci. Meas. Tech. (1988)
- Monk, (2003)
- Nicolet A, Delince F (1996) Implicit Runge-Kutta methods for transient magnetic field computation. IEEE Trans Magn 32(3):1405–1408. https://doi.org/10.1109/20.49751 – 10.1109/20.497510
- Cortes Garcia, (2020)
- Dular P, Geuzaine C (2002) Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling. IEEE Trans Magn 38(2):633–636. https://doi.org/10.1109/20.99616 – 10.1109/20.996165
- Zhang, (2005)
- Chung-Wen Ho, Ruehli A, Brennan P (1975) The modified nodal approach to network analysis. IEEE Trans Circuits Syst 22(6):504–509. https://doi.org/10.1109/tcs.1975.108407 – 10.1109/tcs.1975.1084079
- Dular P, Geuzaine C, Henrotte F, Legros W (1998) A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans Magn 34(5):3395–3398. https://doi.org/10.1109/20.71779 – 10.1109/20.717799
- Geuzaine C, Remacle J (2009) Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. Numerical Meth Engineering 79(11):1309–1331. https://doi.org/10.1002/nme.257 – 10.1002/nme.2579
- Altmann, Code implementations: energy-based modeling for field-circuit coupling. Zenodo (2025)
- Hairer, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. (2002)
- Guérin C, Jacques K, Sabariego RV, Dular P, Geuzaine C, Gyselinck J (2016) Using a Jiles‐Atherton vector hysteresis model for isotropic magnetic materials with the finite element method, Newton‐Raphson method, and relaxation procedure. Int J Numerical Modelling 30(5). https://doi.org/10.1002/jnm.218 – 10.1002/jnm.2189
- Bottauscio, A Test Case for Validation of Magnetic Field Analysis with Vector Hysteresis. (2010)
- Maier S, Marheineke N, Frommer A (2025) Energy-preserving iteration schemes for Gauss collocation integrators. Linear Algebra and its Applications. https://doi.org/10.1016/j.laa.2025.09.00 – 10.1016/j.laa.2025.09.005