Authors

E. Franco, J. Tang, A. Garriga Casanovas, F. Rodriguez y Baena, A. Astolfi

Abstract

This work investigates the position control problem for a soft continuum manipulator in Cartesian space intended for minimally invasive surgery. Soft continuum manipulators have a large number of degrees-of-freedom and are particularly susceptible to external forces because of their compliance. This, in conjunction with the limited number of sensors typically available, results in uncertain kinematics, which further complicates the control problem. We have designed a partial state feedback that compensates the effects of external forces employing a rigid-link model and a port-Hamiltonian approach and we have investigated in detail the use of integral action to achieve position regulation in Cartesian space. Local stability conditions are discussed with a Lyapunov approach. The performance of the controller is compared with that achieved with a radial-basis-functions neural network by means of simulations and experiments on two prototypes.

Keywords

Disturbance Rejection; Lagrangian; Hamiltonian systems; Passivity-based control

Citation

  • Journal: IFAC-PapersOnLine
  • Year: 2020
  • Volume: 53
  • Issue: 2
  • Pages: 9847–9852
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.ifacol.2020.12.2689
  • Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020

BibTeX

@article{Franco_2020,
  title={{Position Control of Soft Manipulators with Dynamic and Kinematic Uncertainties}},
  volume={53},
  ISSN={2405-8963},
  DOI={10.1016/j.ifacol.2020.12.2689},
  number={2},
  journal={IFAC-PapersOnLine},
  publisher={Elsevier BV},
  author={Franco, E. and Tang, J. and Casanovas, A. Garriga and y Baena, F. Rodriguez and Astolfi, A.},
  year={2020},
  pages={9847--9852}
}

Download the bib file

References

  • Alqumsan, A. A., Khoo, S. & Norton, M. Robust control of continuum robots using Cosserat rod theory. Mechanism and Machine Theory vol. 131 48–61 (2019) – 10.1016/j.mechmachtheory.2018.09.011
  • Astolfi, (2007)
  • Bieze, T. M. et al. Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators. Soft Robotics vol. 5 348–364 (2018) – 10.1089/soro.2017.0079
  • Falkenhahn, V., Hildebrandt, A., Neumann, R. & Sawodny, O. Dynamic Control of the Bionic Handling Assistant. IEEE/ASME Transactions on Mechatronics vol. 22 6–17 (2017) – 10.1109/tmech.2016.2605820
  • Franco, E. Adaptive IDA‐PBC for underactuated mechanical systems with constant disturbances. International Journal of Adaptive Control and Signal Processing vol. 33 1–15 (2018) – 10.1002/acs.2947
  • Franco, E., Casanovas, A. G., Rodriguez y Baena, F. & Astolfi, A. Model based adaptive control for a soft robotic manipulator. 2019 IEEE 58th Conference on Decision and Control (CDC) 1019–1024 (2019) doi:10.1109/cdc40024.2019.9029449 – 10.1109/cdc40024.2019.9029449
  • Franco, Energy Shaping Control of Soft Continuum Manipulators with in-plane Disturbances. The International Journal of Robotics Research (2020)
  • Franco, Robust Dynamic State Feedback for Underactuated Systems with Linearly Parameterized Disturbances. International Journal of Robust and Nonlinear Control (2020)
  • Garriga-Casanovas, A., Collison, I. & Rodriguez y Baena, F. Toward a Common Framework for the Design of Soft Robotic Manipulators with Fluidic Actuation. Soft Robotics vol. 5 622–649 (2018) – 10.1089/soro.2017.0105
  • Godage, I. S., Wirz, R., Walker, I. D. & Webster, R. J., III. Accurate and Efficient Dynamics for Variable-Length Continuum Arms: A Center of Gravity Approach. Soft Robotics vol. 2 96–106 (2015) – 10.1089/soro.2015.0006
  • Katzschmann, R. K., Santina, C. D., Toshimitsu, Y., Bicchi, A. & Rus, D. Dynamic Motion Control of Multi-Segment Soft Robots Using Piecewise Constant Curvature Matched with an Augmented Rigid Body Model. 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) 454–461 (2019) doi:10.1109/robosoft.2019.8722799 – 10.1109/robosoft.2019.8722799
  • Li, M., Kang, R., Branson, D. T. & Dai, J. S. Model-Free Control for Continuum Robots Based on an Adaptive Kalman Filter. IEEE/ASME Transactions on Mechatronics vol. 23 286–297 (2018) – 10.1109/tmech.2017.2775663
  • Mattioni, Modelling and control of a class of lumped beam with distributed control. IFACPapersOnLine (2018)
  • Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
  • Park, J. & Sandberg, I. W. Universal Approximation Using Radial-Basis-Function Networks. Neural Computation vol. 3 246–257 (1991) – 10.1162/neco.1991.3.2.246
  • Renda, F., Boyer, F., Dias, J. & Seneviratne, L. Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics. IEEE Transactions on Robotics vol. 34 1518–1533 (2018) – 10.1109/tro.2018.2868815
  • Runciman, M., Darzi, A. & Mylonas, G. P. Soft Robotics in Minimally Invasive Surgery. Soft Robotics vol. 6 423–443 (2019) – 10.1089/soro.2018.0136
  • Suzumori, K. Elastic materials producing compliant robots. Robotics and Autonomous Systems vol. 18 135–140 (1996) – 10.1016/0921-8890(95)00078-x
  • George Thuruthel, T., Ansari, Y., Falotico, E. & Laschi, C. Control Strategies for Soft Robotic Manipulators: A Survey. Soft Robotics vol. 5 149–163 (2018) – 10.1089/soro.2017.0007
  • George Thuruthel, T. et al. Learning Closed Loop Kinematic Controllers for Continuum Manipulators in Unstructured Environments. Soft Robotics vol. 4 285–296 (2017) – 10.1089/soro.2016.0051