Position regulation in Cartesian space of a class of inextensible soft continuum manipulators with pneumatic actuation
Authors
Enrico Franco, Arnau Garriga Casanovas, Jacky Tang, Ferdinando Rodriguez y Baena, Alessandro Astolfi
Abstract
This work investigates the position regulation in Cartesian space of a class of inextensible soft continuum manipulators with pneumatic actuation subject to model uncertainties and to unknown external disturbances that act on the tip. Soft continuum manipulators are characterised by high structural compliance which results in a large number of degrees-of-freedom, only a subset of which can be actuated independently or instrumented with sensors. External disturbances, which are common in many applications, result in uncertain dynamics and in uncertain kinematics thus making the control problem particularly challenging. We have investigated the use of integral action to model the uncertain kinematics of the manipulators, and we have designed a new control law to achieve position regulation in Cartesian space by employing a port-Hamiltonian formulation and a passivity-based approach. In addition, we have compared two adaptive laws that compensate the effects of the external disturbances on the system dynamics. Local stability conditions are discussed with a Lyapunov approach and are related to the controller parameters. The performance of the controller is demonstrated by means of simulations and experiments with two different prototypes.
Keywords
Soft continuum manipulators; Disturbance rejection; Hamiltonian systems; Passivity-based control
Citation
- Journal: Mechatronics
- Year: 2021
- Volume: 76
- Issue:
- Pages: 102573
- Publisher: Elsevier BV
- DOI: 10.1016/j.mechatronics.2021.102573
BibTeX
@article{Franco_2021,
title={{Position regulation in Cartesian space of a class of inextensible soft continuum manipulators with pneumatic actuation}},
volume={76},
ISSN={0957-4158},
DOI={10.1016/j.mechatronics.2021.102573},
journal={Mechatronics},
publisher={Elsevier BV},
author={Franco, Enrico and Garriga Casanovas, Arnau and Tang, Jacky and Rodriguez y Baena, Ferdinando and Astolfi, Alessandro},
year={2021},
pages={102573}
}
References
- Runciman, M., Darzi, A. & Mylonas, G. P. Soft Robotics in Minimally Invasive Surgery. Soft Robotics vol. 6 423–443 (2019) – 10.1089/soro.2018.0136
- Oliveira, J., Ferreira, A. & Reis, J. C. P. Design and experiments on an inflatable link robot with a built-in vision sensor. Mechatronics vol. 65 102305 (2020) – 10.1016/j.mechatronics.2019.102305
- Li, X., Sun, K., Guo, C., Liu, T. & Liu, H. Design, modeling and characterization of a joint for inflatable robotic arms. Mechatronics vol. 65 102311 (2020) – 10.1016/j.mechatronics.2019.102311
- George Thuruthel, T., Ansari, Y., Falotico, E. & Laschi, C. Control Strategies for Soft Robotic Manipulators: A Survey. Soft Robotics vol. 5 149–163 (2018) – 10.1089/soro.2017.0007
- Franco, Adaptive control of a master-slave system for teleoperated needle insertion under MRI-guidance. (2015)
- Hofer, M. & D’Andrea, R. Design, fabrication, modeling and control of a fabric-based spherical robotic arm. Mechatronics vol. 68 102369 (2020) – 10.1016/j.mechatronics.2020.102369
- Wang, J., Fei, Y. & Liu, Z. Locomotion modeling of a triangular closed-chain soft rolling robot. Mechatronics vol. 57 150–163 (2019) – 10.1016/j.mechatronics.2018.12.003
- Suzumori, K. Elastic materials producing compliant robots. Robotics and Autonomous Systems vol. 18 135–140 (1996) – 10.1016/0921-8890(95)00078-x
- Garriga-Casanovas, A., Collison, I. & Rodriguez y Baena, F. Toward a Common Framework for the Design of Soft Robotic Manipulators with Fluidic Actuation. Soft Robotics vol. 5 622–649 (2018) – 10.1089/soro.2017.0105
- Franco, E. & Garriga-Casanovas, A. Energy-shaping control of soft continuum manipulators with in-plane disturbances. The International Journal of Robotics Research vol. 40 236–255 (2020) – 10.1177/0278364920907679
- Godage, I. S., Wirz, R., Walker, I. D. & Webster, R. J., III. Accurate and Efficient Dynamics for Variable-Length Continuum Arms: A Center of Gravity Approach. Soft Robotics vol. 2 96–106 (2015) – 10.1089/soro.2015.0006
- Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature vol. 521 467–475 (2015) – 10.1038/nature14543
- Elgeneidy, K., Lohse, N. & Jackson, M. Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors – A data-driven approach. Mechatronics vol. 50 234–247 (2018) – 10.1016/j.mechatronics.2017.10.005
- George Thuruthel, T. et al. Learning Closed Loop Kinematic Controllers for Continuum Manipulators in Unstructured Environments. Soft Robotics vol. 4 285–296 (2017) – 10.1089/soro.2016.0051
- Li, M., Kang, R., Branson, D. T. & Dai, J. S. Model-Free Control for Continuum Robots Based on an Adaptive Kalman Filter. IEEE/ASME Transactions on Mechatronics vol. 23 286–297 (2018) – 10.1109/tmech.2017.2775663
- Bieze, T. M. et al. Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators. Soft Robotics vol. 5 348–364 (2018) – 10.1089/soro.2017.0079
- Goury, O. & Duriez, C. Fast, Generic, and Reliable Control and Simulation of Soft Robots Using Model Order Reduction. IEEE Transactions on Robotics vol. 34 1565–1576 (2018) – 10.1109/tro.2018.2861900
- Morales Bieze, T., Kruszewski, A., Carrez, B. & Duriez, C. Design, implementation, and control of a deformable manipulator robot based on a compliant spine. The International Journal of Robotics Research vol. 39 1604–1619 (2020) – 10.1177/0278364920910487
- Renda, F., Boyer, F., Dias, J. & Seneviratne, L. Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics. IEEE Transactions on Robotics vol. 34 1518–1533 (2018) – 10.1109/tro.2018.2868815
- Katzschmann, Dynamic Motion Control of Multi-Segment Soft Robots Using Piecewise Constant Curvature Matched with an Augmented Rigid Body Model. (2019)
- Santina, C. D. & Rus, D. Control Oriented Modeling of Soft Robots: The Polynomial Curvature Case. IEEE Robotics and Automation Letters vol. 5 290–298 (2020) – 10.1109/lra.2019.2955936
- Pan, Y., Li, X., Wang, H. & Yu, H. Continuous sliding mode control of compliant robot arms: A singularly perturbed approach. Mechatronics vol. 52 127–134 (2018) – 10.1016/j.mechatronics.2018.04.005
- Abu Alqumsan, A., Khoo, S. & Norton, M. Multi-surface sliding mode control of continuum robots with mismatched uncertainties. Meccanica vol. 54 2307–2316 (2019) – 10.1007/s11012-019-01072-6
- Falkenhahn, V., Hildebrandt, A., Neumann, R. & Sawodny, O. Dynamic Control of the Bionic Handling Assistant. IEEE/ASME Transactions on Mechatronics vol. 22 6–17 (2017) – 10.1109/tmech.2016.2605820
- Wang, C., Frazelle, C. G., Wagner, J. R. & Walker, I. D. Dynamic Control of Multisection Three-Dimensional Continuum Manipulators Based on Virtual Discrete-Jointed Robot Models. IEEE/ASME Transactions on Mechatronics vol. 26 777–788 (2021) – 10.1109/tmech.2020.2999847
- Della Santina, C. et al. Controlling Soft Robots: Balancing Feedback and Feedforward Elements. IEEE Robotics & Automation Magazine vol. 24 75–83 (2017) – 10.1109/mra.2016.2636360
- Della Santina, C., Katzschmann, R. K., Bicchi, A. & Rus, D. Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. The International Journal of Robotics Research vol. 39 490–513 (2020) – 10.1177/0278364919897292
- Franco, E., Tang, J., Casanovas, A. G., y Baena, F. R. & Astolfi, A. Position Control of Soft Manipulators with Dynamic and Kinematic Uncertainties. IFAC-PapersOnLine vol. 53 9847–9852 (2020) – 10.1016/j.ifacol.2020.12.2689
- Astolfi, (2007)
- Astolfi, A. & Ortega, R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic Control vol. 48 590–606 (2003) – 10.1109/tac.2003.809820
- Youcef-Toumi, A Time Delay Controller for Systems with Unknown Dynamics. In: IEEE American Control Conference; (1988)
- Franco, Model based adaptive control for a soft robotic manipulator. (2019)
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Franco, E. Adaptive IDA‐PBC for underactuated mechanical systems with constant disturbances. International Journal of Adaptive Control and Signal Processing vol. 33 1–15 (2018) – 10.1002/acs.2947
- Franco, E., Rodriguez y Baena, F. & Astolfi, A. Robust dynamic state feedback for underactuated systems with linearly parameterized disturbances. International Journal of Robust and Nonlinear Control vol. 30 4112–4128 (2020) – 10.1002/rnc.4985
- Franco, Discrete-time IDA-PBC for Underactuated Mechanical Systems with Input-Delay and Matched Disturbances. (2018)
- Franco, E. Immersion and invariance adaptive control for discrete‐time systems in strict‐feedback form with input delay and disturbances. International Journal of Adaptive Control and Signal Processing vol. 32 69–82 (2017) – 10.1002/acs.2825
- Franco, Time delay controller for the position control of a MRI-compatible pneumatic actuation with long supply lines. In: IEEE/ASME Int. Conf. Adv. Intell. Mechatronics; (2014)
- Kim, J., Jin, M., Choi, W. & Lee, J. Discrete time delay control for hydraulic excavator motion control with terminal sliding mode control. Mechatronics vol. 60 15–25 (2019) – 10.1016/j.mechatronics.2019.04.008
- Franco, E., Brujic, D., Rea, M., Gedroyc, W. M. & Ristic, M. Needle-Guiding Robot for Laser Ablation of Liver Tumors Under MRI Guidance. IEEE/ASME Transactions on Mechatronics vol. 21 931–944 (2016) – 10.1109/tmech.2015.2476556