Energy-based Control and Observer Design for higher-order infinite-dimensional Port-Hamiltonian Systems
Authors
Tobias Malzer, Lukas Ecker, Markus Schöberl
Abstract
In this paper, we present a control-design strategy based on the energy-Casimir method for infinite-dimensional, boundary-actuated port-Hamiltonian systems with two-dimensional spatial domain and second-order Hamiltonian. The resulting control law depends on distributed system states that cannot be measured, and therefore, we additionally design an infinite-dimensional observer by exploiting the port-Hamiltonian system representation. A Kirchhoff-Love plate serves as an example in order to demonstrate the proposed approaches.
Keywords
infinite-dimensional systems; partial differential equations; boundary actuation; port-Hamiltonian systems; structural invariants; observer design
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 44–51
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.053
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Malzer_2021,
title={{Energy-based Control and Observer Design for higher-order infinite-dimensional Port-Hamiltonian Systems}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.053},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Malzer, Tobias and Ecker, Lukas and Schöberl, Markus},
year={2021},
pages={44--51}
}
References
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Ennsbrunner, H. & Schlacher, K. On the geometrical representation and interconnection of infinite dimensional port controlled Hamiltonian systems. Proceedings of the 44th IEEE Conference on Decision and Control 5263–5268 doi:10.1109/cdc.2005.1582998 – 10.1109/cdc.2005.1582998
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Malzer, T., Rams, H., Kolar, B. & Schoberl, M. Stability Analysis of the Observer Error of an In-Domain Actuated Vibrating String. IEEE Control Systems Letters vol. 5 1237–1242 (2021) – 10.1109/lcsys.2020.3025414
- Malzer, T., Rams, H. & Schoberl, M. Energy-Based Control of Nonlinear Infinite-Dimensional Port-Hamiltonian Systems with Dissipation. 2018 IEEE Conference on Decision and Control (CDC) 3746–3751 (2018) doi:10.1109/cdc.2018.8619380 – 10.1109/cdc.2018.8619380
- Malzer, On structural invariants in the energy-based in-domain control of infinite-dimensional port-Hamiltonian systems. Systems & Control Letters (2020)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Meirovitch, (1997)
- Rams, H. & Schoberl, M. On structural invariants in the energy based control of port-Hamiltonian systems with second-order Hamiltonian. 2017 American Control Conference (ACC) 1139–1144 (2017) doi:10.23919/acc.2017.7963106 – 10.23919/acc.2017.7963106
- Saunders, (1989)
- Schöberl, M. & Schlacher, K. Lagrangian and Port-Hamiltonian formulation for Distributed-parameter systems. IFAC-PapersOnLine vol. 48 610–615 (2015) – 10.1016/j.ifacol.2015.05.025
- Schöberl, M. & Schlacher, K. On the extraction of the boundary conditions and the boundary ports in second-order field theories. Journal of Mathematical Physics vol. 59 (2018) – 10.1063/1.5024847
- Toledo, J., Ramirez, H., Wu, Y. & Gorrec, Y. L. Passive observers for distributed port-Hamiltonian systems. IFAC-PapersOnLine vol. 53 7587–7592 (2020) – 10.1016/j.ifacol.2020.12.1356
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3