Energy-Based Control of Nonlinear Infinite-Dimensional Port-Hamiltonian Systems with Dissipation
Authors
T. Malzer, H. Rams, M. Schoberl
Abstract
In this paper, we consider nonlinear PDEs in a port-Hamiltonian setting based on an underlying jet-bundle structure. We restrict ourselves to systems with 1-dimensional spatial domain and 2nd-order Hamiltonian including certain dissipation models that can be incorporated in the port-Hamiltonian framework by means of appropriate differential operators. For this system class, energy-based control by means of Casimir functionals as well as energy balancing is analysed and demonstrated using a nonlinear Euler-Bernoulli beam.
Citation
- Journal: 2018 IEEE Conference on Decision and Control (CDC)
- Year: 2018
- Volume:
- Issue:
- Pages: 3746–3751
- Publisher: IEEE
- DOI: 10.1109/cdc.2018.8619380
BibTeX
@inproceedings{Malzer_2018,
title={{Energy-Based Control of Nonlinear Infinite-Dimensional Port-Hamiltonian Systems with Dissipation}},
DOI={10.1109/cdc.2018.8619380},
booktitle={{2018 IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Malzer, T. and Rams, H. and Schoberl, M.},
year={2018},
pages={3746--3751}
}
References
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mech 222, 69–89 (2011) – 10.1007/s00707-011-0510-2
- Rams, H. & Schoberl, M. On structural invariants in the energy based control of port-Hamiltonian systems with second-order Hamiltonian. 2017 American Control Conference (ACC) 1139–1144 (2017) doi:10.23919/acc.2017.7963106 – 10.23919/acc.2017.7963106
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 62, 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Giachetta, G., Mangiarotti, L. & Sardanashvily, G. New Lagrangian and Hamiltonian Methods in Field Theory. (1997) doi:10.1142/2199 – 10.1142/2199
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems 14, 179–193 (2008) – 10.1080/13873950701844824
- Liu, K. & Liu, Z. Exponential Decay of Energy of the Euler–Bernoulli Beam with Locally Distributed Kelvin–Voigt Damping. SIAM J. Control Optim. 36, 1086–1098 (1998) – 10.1137/s0363012996310703
- meirovitch, Analytical Methods in Vibrations (1967)
- kugi, Nonlinear Control Based on Physical Models Electrical Mechanical and Hydraulic Systems (2001)
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Trans. Automat. Contr. 58, 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica 50, 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Schöberl, M. & Schlacher, K. Lagrangian and Port-Hamiltonian formulation for Distributed-parameter systems. IFAC-PapersOnLine 48, 610–615 (2015) – 10.1016/j.ifacol.2015.05.025
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530