Decoding and realising flapping flight with port-Hamiltonian system theory
Authors
Federico Califano, Ramy Rashad, Alexander Dijkshoorn, Luuk Groot Koerkamp, Riccardo Sneep, Andrea Brugnoli, Stefano Stramigioli
Abstract
In this paper we envision how to tackle a particularly challenging problem which presents highly interdisciplinary features, ranging from biology to engineering: the dynamic description and technological realisation of flapping flight. This document explains why, in order to gain new insights into this topic, we chose to employ port-Hamiltonian theory. We discuss how the physically unifying character of the framework is able to describe flapping dynamics in all its important aspects. The technological and theoretical challenges of flapping flight are discussed by considering the interplay between different topics. First of all, the formal conceptualisation of the problem is analysed. Second, the features and capabilities of port-Hamiltonian framework as the underneath mathematical language are presented. Subsequently, the discretisation of the resulting model by means of structure-preserving strategies is addressed. Once a reliable numerical model is available, we discuss how control actions can be computed based on high-level specifications aiming at increasing the flight performances. In the last part, the technological tools needed to validate experimentally the models and to equip a robotic bird prototype with the necessary sensing and actuation devices are discussed.
Keywords
Port-Hamiltonian system; Flapping flight; Energy aware robotics; Fluid–solid interaction
Citation
- Journal: Annual Reviews in Control
- Year: 2021
- Volume: 51
- Issue:
- Pages: 37–46
- Publisher: Elsevier BV
- DOI: 10.1016/j.arcontrol.2021.03.009
BibTeX
@article{Califano_2021,
title={{Decoding and realising flapping flight with port-Hamiltonian system theory}},
volume={51},
ISSN={1367-5788},
DOI={10.1016/j.arcontrol.2021.03.009},
journal={Annual Reviews in Control},
publisher={Elsevier BV},
author={Califano, Federico and Rashad, Ramy and Dijkshoorn, Alexander and Koerkamp, Luuk Groot and Sneep, Riccardo and Brugnoli, Andrea and Stramigioli, Stefano},
year={2021},
pages={37--46}
}
References
- Ajanic, (2020)
- Altshuler, D. L. et al. The biophysics of bird flight: functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors. Canadian Journal of Zoology vol. 93 961–975 (2015) – 10.1139/cjz-2015-0103
- Arnold, D. N., Falk, R. S. & Winther, R. Finite element exterior calculus, homological techniques, and applications. Acta Numerica vol. 15 1–155 (2006) – 10.1017/s0962492906210018
- Arnold, (2020)
- Bauer, W. & Cotter, C. J. Energy–enstrophy conserving compatible finite element schemes for the rotating shallow water equations with slip boundary conditions. Journal of Computational Physics vol. 373 171–187 (2018) – 10.1016/j.jcp.2018.06.071
- Blanc, L., Delchambre, A. & Lambert, P. Flexible Medical Devices: Review of Controllable Stiffness Solutions. Actuators vol. 6 23 (2017) – 10.3390/act6030023
- Bomphrey, The aerodynamics of manduca sexta: Digital particle image velocimetry analysis of the leading-edge vortex. Journal of Fish Biology (2005)
- Boutet, J. & Dimitriadis, G. Unsteady Lifting Line Theory Using the Wagner Function for the Aerodynamic and Aeroelastic Modeling of 3D Wings. Aerospace vol. 5 92 (2018) – 10.3390/aerospace5030092
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Interconnection of the Kirchhoff plate within the port-Hamiltonian framework. 2019 IEEE 58th Conference on Decision and Control (CDC) 6857–6862 (2019) doi:10.1109/cdc40024.2019.9029487 – 10.1109/cdc40024.2019.9029487
- Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annual Review of Fluid Mechanics vol. 52 477–508 (2020) – 10.1146/annurev-fluid-010719-060214
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Calvo, M. P. & Hairer, E. Accurate long-term integration of dynamical systems. Applied Numerical Mathematics vol. 18 95–105 (1995) – 10.1016/0168-9274(95)00046-w
- Cardoso-Ribeiro, A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information (2020)
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Chang, E., Matloff, L. Y., Stowers, A. K. & Lentink, D. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion. Science Robotics vol. 5 (2020) – 10.1126/scirobotics.aay1246
- Chin, Flapping wing aerodynamics: from insects to vertebrates. Journal of Fish Biology (2016)
- Chin, D. D., Matloff, L. Y., Stowers, A. K., Tucci, E. R. & Lentink, D. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates. Journal of The Royal Society Interface vol. 14 20170240 (2017) – 10.1098/rsif.2017.0240
- Christiansen, S. H., Munthe-Kaas, H. Z. & Owren, B. Topics in structure-preserving discretization. Acta Numerica vol. 20 1–119 (2011) – 10.1017/s096249291100002x
- de Croon, Flapping wing drones show off their skills. Science Robotics (2020)
- Darrigol, (2005)
- DeLaurier, J. D. An aerodynamic model for flapping-wing flight. The Aeronautical Journal vol. 97 125–130 (1993) – 10.1017/s0001924000026002
- Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. Wing Rotation and the Aerodynamic Basis of Insect Flight. Science vol. 284 1954–1960 (1999) – 10.1126/science.284.5422.1954
- Dijkshoorn, A. et al. Embedded sensing: integrating sensors in 3-D printed structures. Journal of Sensors and Sensor Systems vol. 7 169–181 (2018) – 10.5194/jsss-7-169-2018
- Duindam, (2009)
- Duindam, V. & Stramigioli, S. Port-Based Asymptotic Curve Tracking for Mechanical Systems. European Journal of Control vol. 10 411–420 (2004) – 10.3166/ejc.10.411-420
- Duraisamy, K., Iaccarino, G. & Xiao, H. Turbulence Modeling in the Age of Data. Annual Review of Fluid Mechanics vol. 51 357–377 (2019) – 10.1146/annurev-fluid-010518-040547
- Ellington, C. P., van den Berg, C., Willmott, A. P. & Thomas, A. L. R. Leading-edge vortices in insect flight. Nature vol. 384 626–630 (1996) – 10.1038/384626a0
- Faleiros, D. E., Tuinstra, M., Sciacchitano, A. & Scarano, F. Generation and control of helium-filled soap bubbles for PIV. Experiments in Fluids vol. 60 (2019) – 10.1007/s00348-019-2687-4
- Filippo, J. M.-D., Delgado, M., Brie, C. & Paynter, H. M. A survey of bond graphs : Theory, applications and programs. Journal of the Franklin Institute vol. 328 565–606 (1991) – 10.1016/0016-0032(91)90044-4
- Floreano, D. & Wood, R. J. Science, technology and the future of small autonomous drones. Nature vol. 521 460–466 (2015) – 10.1038/nature14542
- Folkertsma, G. A., Straatman, W., Nijenhuis, N., Venner, C. H. & Stramigioli, S. Robird: A Robotic Bird of Prey. IEEE Robotics & Automation Magazine vol. 24 22–29 (2017) – 10.1109/mra.2016.2636368
- Gerdes, J. et al. Robo Raven: A Flapping-Wing Air Vehicle with Highly Compliant and Independently Controlled Wings. Soft Robotics vol. 1 275–288 (2014) – 10.1089/soro.2014.0019
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Gravish, Robotics-inspired biology. Journal of Fish Biology (2018)
- Gutierrez, E., Quinn, D. B., Chin, D. D. & Lentink, D. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics. Bioinspiration & Biomimetics vol. 12 016004 (2016) – 10.1088/1748-3190/12/1/016004
- Hairer, E. Variable time step integration with symplectic methods. Applied Numerical Mathematics vol. 25 219–227 (1997) – 10.1016/s0168-9274(97)00061-5
- Hairer, (2006)
- Han, Review on bio-inspired flight systems and bionic aerodynamics. Chinese Journal of Aeronautics (2020)
- Hawkes, E. W. & Cutkosky, M. R. Design of Materials and Mechanisms for Responsive Robots. Annual Review of Control, Robotics, and Autonomous Systems vol. 1 359–384 (2018) – 10.1146/annurev-control-060117-104903
- Henningsson, P., Spedding, G. R. & Hedenström, A. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel. Journal of Experimental Biology vol. 211 717–730 (2008) – 10.1242/jeb.012146
- Hogan, (1985)
- Huh, T. M., Park, Y.-J. & Cho, K.-J. Design and analysis of a stiffness adjustable structure using an endoskeleton. International Journal of Precision Engineering and Manufacturing vol. 13 1255–1258 (2012) – 10.1007/s12541-012-0168-2
- Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature vol. 570 491–495 (2019) – 10.1038/s41586-019-1322-0
- Jiang, Sliding-layer laminates: A robotic material enabling robust and adaptable undulatory locomotion. (2018)
- Jiang, Y. et al. Enhanced flow sensing with interfacial microstructures. Biosurface and Biotribology vol. 6 12–19 (2020) – 10.1049/bsbt.2019.0043
- Karásek, M., Muijres, F. T., De Wagter, C., Remes, B. D. W. & de Croon, G. C. H. E. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science vol. 361 1089–1094 (2018) – 10.1126/science.aat0350
- Karydis, K. & Kumar, V. Energetics in robotic flight at small scales. Interface Focus vol. 7 20160088 (2017) – 10.1098/rsfs.2016.0088
- Kirby, R. C. & Kieu, T. T. Symplectic-mixed finite element approximation of linear acoustic wave equations. Numerische Mathematik vol. 130 257–291 (2014) – 10.1007/s00211-014-0667-4
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Lau, G.-K. A stunt flying hawk-inspired drone. Science Robotics vol. 5 (2020) – 10.1126/scirobotics.abe8379
- Lee, Y., Yang, H. & Yin, Z. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry. Experiments in Fluids vol. 58 (2017) – 10.1007/s00348-017-2456-1
- Lentink, Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Fish Biology (2009)
- Li, C., Dong, H. & Liang, Z. Proper Orthogonal Decomposition Analysis of 3-D Wake Structures in a Pitching-Rolling Plate. 54th AIAA Aerospace Sciences Meeting (2016) doi:10.2514/6.2016-2071 – 10.2514/6.2016-2071
- Ling, J., Kurzawski, A. & Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics vol. 807 155–166 (2016) – 10.1017/jfm.2016.615
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links. IEEE Transactions on Robotics vol. 25 1016–1029 (2009) – 10.1109/tro.2009.2026504
- Mackenzie, D. A Flapping of Wings. Science vol. 335 1430–1433 (2012) – 10.1126/science.335.6075.1430
- Magar, K. T., Pankonien, A. M., Reich, G. W. & Beblo, R. V. Aerodynamic Parameter Prediction via Artificial Hair Sensors with Signal Power in Turbulent Flow. AIAA Journal vol. 57 898–903 (2019) – 10.2514/1.j057632
- Mark, A., Xu, Y. & Dickinson, B. T. Review of Microscale Flow-Sensor-Enabled Mechanosensing in Small Unmanned Aerial Vehicles. Journal of Aircraft vol. 56 962–973 (2019) – 10.2514/1.c034979
- Marsden, (2013)
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Matloff, L. Y. et al. How flight feathers stick together to form a continuous morphing wing. Science vol. 367 293–297 (2020) – 10.1126/science.aaz3358
- McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science vol. 347 (2015) – 10.1126/science.1261689
- Mintchev, S. & Floreano, D. Adaptive Morphology: A Design Principle for Multimodal and Multifunctional Robots. IEEE Robotics & Automation Magazine vol. 23 42–54 (2016) – 10.1109/mra.2016.2580593
- Mohamed, A. et al. Fixed-wing MAV attitude stability in atmospheric turbulence—Part 2: Investigating biologically-inspired sensors. Progress in Aerospace Sciences vol. 71 1–13 (2014) – 10.1016/j.paerosci.2014.06.002
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Rafiee, M., Farahani, R. D. & Therriault, D. Multi‐Material 3D and 4D Printing: A Survey. Advanced Science vol. 7 (2020) – 10.1002/advs.201902307
- Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics vol. 378 686–707 (2019) – 10.1016/j.jcp.2018.10.045
- Ramezani, A., Chung, S.-J. & Hutchinson, S. A biomimetic robotic platform to study flight specializations of bats. Science Robotics vol. 2 (2017) – 10.1126/scirobotics.aal2505
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Rashad, Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics (2021)
- Rashad, Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. Journal of Geometry and Physics (2021)
- (2019)
- Scarano, F. Tomographic PIV: principles and practice. Measurement Science and Technology vol. 24 012001 (2012) – 10.1088/0957-0233/24/1/012001
- Schanz, D., Gesemann, S. & Schröder, A. Shake-The-Box: Lagrangian particle tracking at high particle image densities. Experiments in Fluids vol. 57 (2016) – 10.1007/s00348-016-2157-1
- Schouten, A review of extrusion-based 3D printing for the fabrication of electro-and biomechanical sensors. IEEE Sensors Journal (2020)
- Send, (2012)
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Shin, Sensing skin for detecting wing deformation with embedded soft strain sensors. (2016)
- Shyy, (2013)
- Slinker, K. A., Kondash, C., Dickinson, B. T. & Baur, J. W. CNT‐Based Artificial Hair Sensors for Predictable Boundary Layer Air Flow Sensing. Advanced Materials Technologies vol. 1 (2016) – 10.1002/admt.201600176
- Spedding, A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. Journal of Fish Biology (2003)
- Stramigioli, S. Energy-Aware Robotics. Lecture Notes in Control and Information Sciences 37–50 (2015) doi:10.1007/978-3-319-20988-3_3 – 10.1007/978-3-319-20988-3_3
- Kerho, M. F. & Bragg, M. B. Neutrally buoyant bubbles used as flow tracers in air. Experiments in Fluids vol. 16 393–400 (1994) – 10.1007/bf00202064
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Wissman, J. et al. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles. Smart Materials and Structures vol. 22 085031 (2013) – 10.1088/0964-1726/22/8/085031
- Yang, G.-Z. et al. The grand challenges o Science Robotics. Science Robotics vol. 3 (2018) – 10.1126/scirobotics.aar7650
- Zolfagharian, A., Kaynak, A. & Kouzani, A. Closed-loop 4D-printed soft robots. Materials & Design vol. 188 108411 (2020) – 10.1016/j.matdes.2019.108411