Authors

Vincent Duindam, Stefano Stramigioli

Abstract

We examine the control problem of curve-tracking for a fully actuated mechanical system. Using a coordinate transformation on the momentum variables, we split the kinetic energy of the system in a desired and an undesired part, and then design an (intrinsically passive) controller as an interconnection of port- Hamiltonian subsystems, in such a way that asymptotic convergence to the desired curve is obtained. We illustrate the performance in a simulation.

Keywords

Hamiltonian Control Systems; Mechanical Systems; Nonlinear Control

Citation

  • Journal: European Journal of Control
  • Year: 2004
  • Volume: 10
  • Issue: 5
  • Pages: 411–420
  • Publisher: Elsevier BV
  • DOI: 10.3166/ejc.10.411-420

BibTeX

@article{Duindam_2004,
  title={{Port-Based Asymptotic Curve Tracking for Mechanical Systems}},
  volume={10},
  ISSN={0947-3580},
  DOI={10.3166/ejc.10.411-420},
  number={5},
  journal={European Journal of Control},
  publisher={Elsevier BV},
  author={Duindam, Vincent and Stramigioli, Stefano},
  year={2004},
  pages={411--420}
}

Download the bib file

References

  • Blankenstein, G. & van der Schaft, A. J. Reduction of implicit hamiltonian systems with symmetry. 1999 European Control Conference (ECC) 563–568 (1999) doi:10.23919/ecc.1999.7099364 – 10.23919/ecc.1999.7099364
  • Duindam, Portbased modeling and analysis of snakeboard locomotion. (2004)
  • Duindam, Passive asymptotic curve tracking. (2003)
  • Duindam, Energy-based modelreduction and control of nonholonomic mechanical systems. (2004)
  • Duindam, V., Stramigioli, S. & Scherpen, J. M. A. Passive Compensation of Nonlinear Robot Dynamics. IEEE Transactions on Robotics and Automation vol. 20 480–487 (2004) – 10.1109/tra.2004.824693
  • Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control vol. 107 1–7 (1985) – 10.1115/1.3140702
  • Karnopp, (1990)
  • Li, Passive velocity field control of mechanical manipulators. (1995)
  • Li, P. Y. & Horowitz, R. Passive velocity field control of mechanical manipulators. IEEE Transactions on Robotics and Automation vol. 15 751–763 (1999) – 10.1109/70.782030
  • Paynter, (1961)
  • Salisbury, Active stiffness control of a manipulator in Cartesian coordinates. (1980)
  • van der Schaft, (2000)
  • Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
  • Slotine, (1991)
  • Stramigioli, (2001)
  • Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control vol. 103 119–125 (1981) – 10.1115/1.3139651