Port-Based Asymptotic Curve Tracking for Mechanical Systems
Authors
Vincent Duindam, Stefano Stramigioli
Abstract
We examine the control problem of curve-tracking for a fully actuated mechanical system. Using a coordinate transformation on the momentum variables, we split the kinetic energy of the system in a desired and an undesired part, and then design an (intrinsically passive) controller as an interconnection of port- Hamiltonian subsystems, in such a way that asymptotic convergence to the desired curve is obtained. We illustrate the performance in a simulation.
Keywords
Hamiltonian Control Systems; Mechanical Systems; Nonlinear Control
Citation
- Journal: European Journal of Control
- Year: 2004
- Volume: 10
- Issue: 5
- Pages: 411–420
- Publisher: Elsevier BV
- DOI: 10.3166/ejc.10.411-420
BibTeX
@article{Duindam_2004,
title={{Port-Based Asymptotic Curve Tracking for Mechanical Systems}},
volume={10},
ISSN={0947-3580},
DOI={10.3166/ejc.10.411-420},
number={5},
journal={European Journal of Control},
publisher={Elsevier BV},
author={Duindam, Vincent and Stramigioli, Stefano},
year={2004},
pages={411--420}
}
References
- Blankenstein, G. & van der Schaft, A. J. Reduction of implicit hamiltonian systems with symmetry. 1999 European Control Conference (ECC) 563–568 (1999) doi:10.23919/ecc.1999.7099364 – 10.23919/ecc.1999.7099364
- Duindam, Portbased modeling and analysis of snakeboard locomotion. (2004)
- Duindam, Passive asymptotic curve tracking. (2003)
- Duindam, Energy-based modelreduction and control of nonholonomic mechanical systems. (2004)
- Duindam, V., Stramigioli, S. & Scherpen, J. M. A. Passive Compensation of Nonlinear Robot Dynamics. IEEE Transactions on Robotics and Automation vol. 20 480–487 (2004) – 10.1109/tra.2004.824693
- Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control vol. 107 1–7 (1985) – 10.1115/1.3140702
- Karnopp, (1990)
- Li, Passive velocity field control of mechanical manipulators. (1995)
- Li, P. Y. & Horowitz, R. Passive velocity field control of mechanical manipulators. IEEE Transactions on Robotics and Automation vol. 15 751–763 (1999) – 10.1109/70.782030
- Paynter, (1961)
- Salisbury, Active stiffness control of a manipulator in Cartesian coordinates. (1980)
- van der Schaft, (2000)
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- Slotine, (1991)
- Stramigioli, (2001)
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control vol. 103 119–125 (1981) – 10.1115/1.3139651