Interconnection of the Kirchhoff plate within the port-Hamiltonian framework
Authors
Andrea Brugnoli, Daniel Alazard, Valerie Pommier-Budinger, Denis Matignon
Abstract
The Kirchhoff plate model is detailed by using a tensorial port-Hamiltonian (pH) formulation. A structure-preserving discretization of this model is then achieved by using the partitioned finite element (PFEM). This methodology easily accounts for the boundary variables and the finite-dimensional system can be interconnected to the surrounding environment in a simple and structured manner. The algebraic constraints to be considered are deduced from the boundary conditions, that may be homogeneous or defined by an interconnection with another pH system.The versatility of the proposed approach is assessed by means of numerical simulations. A first illustration considers a rectangular plate clamped on one side and interconnected to a rigid rod welded to the opposite side. A second example exploits the collocated output feature of pH systems to perform damping injection in a plate undergoing an external forcing. A stability proof is obtained by the application of the LaSalle’s invariance principle.
Citation
- Journal: 2019 IEEE 58th Conference on Decision and Control (CDC)
- Year: 2019
- Volume:
- Issue:
- Pages: 6857–6862
- Publisher: IEEE
- DOI: 10.1109/cdc40024.2019.9029487
BibTeX
@inproceedings{Brugnoli_2019,
title={{Interconnection of the Kirchhoff plate within the port-Hamiltonian framework}},
DOI={10.1109/cdc40024.2019.9029487},
booktitle={{2019 IEEE 58th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valerie and Matignon, Denis},
year={2019},
pages={6857--6862}
}
References
- Macchelli, A., Melchiorri, C. & Bassi, L. Port-based Modelling and Control of the Mindlin Plate. Proceedings of the 44th IEEE Conference on Decision and Control 5989–5994 doi:10.1109/cdc.2005.1583120 – 10.1109/cdc.2005.1583120
- Homolya, M. & Ham, D. A. A Parallel Edge Orientation Algorithm for Quadrilateral Meshes. SIAM J. Sci. Comput. 38, S48–S61 (2016) – 10.1137/15m1021325
- timoshenko, Theory of Plates and Shells (1959)
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling 75, 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Bell, K. A refined triangular plate bending finite element. Numerical Meth Engineering 1, 101–122 (1969) – 10.1002/nme.1620010108
- Rafetseder, K. & Zulehner, W. A Decomposition Result for Kirchhoff Plate Bending Problems and a New Discretization Approach. SIAM J. Numer. Anal. 56, 1961–1986 (2018) – 10.1137/17m1118427
- Blum, H. & Rannacher, R. On mixed finite element methods in plate bending analysis. Computational Mechanics 6, 221–236 (1990) – 10.1007/bf00350239
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications 372, 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics 231, 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- cardoso-ribeiro, A structure-preserving partitioned finite element method for the 2d wave equation. IFAC Work on Lagrangian and Hamiltonian Methods in Nonlinear Control (2018)
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics 361, 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30, (2018) – 10.1007/s00498-018-0223-3