Boundary L<inf>2</inf>-gain stabilisation of a distributed Port-Hamiltonian system with rectangular domain
Authors
Alessandro Macchelli, Yann Le Gorrec, Hector Ramirez
Abstract
The main contribution of this paper is the development of a boundary control law for a class of distributed port-Hamiltonian systems with rectangular spatial domain that is able not only to shape the closed-loop Hamiltonian, but also to achieve a specific L2-gain between a pair of input and output signals of interest. The energy-shaping control action is based on the so-called control by interconnection and Casimir generation methodology (energy-Casimir method), here extended to deal with distributed port-Hamiltonian systems with 2D domain. On the other hand, the L2-gain property is obtained via damping injection by modulating a gain associated to a dissipative relation. Such approach takes inspiration from the Passivity Observer / Passivity Controller (PO / PC) technique originally developed for telemanipulation systems. Even if the proposed framework is quite abstract and general, possible target applications deal with the stabilisation of flexible structures, or with the stabilisation and attenuation of sound propagation in rectangular cavities.
Citation
- Journal: 2015 54th IEEE Conference on Decision and Control (CDC)
- Year: 2015
- Volume:
- Issue:
- Pages: 1236–1241
- Publisher: IEEE
- DOI: 10.1109/cdc.2015.7402380
BibTeX
@inproceedings{Macchelli_2015,
title={{Boundary L<inf>2</inf>-gain stabilisation of a distributed Port-Hamiltonian system with rectangular domain}},
DOI={10.1109/cdc.2015.7402380},
booktitle={{2015 54th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Macchelli, Alessandro and Le Gorrec, Yann and Ramirez, Hector},
year={2015},
pages={1236--1241}
}
References
- Macchelli, A., Melchiorri, C. & Bassi, L. Port-based Modelling and Control of the Mindlin Plate. Proceedings of the 44th IEEE Conference on Decision and Control 5989–5994 doi:10.1109/cdc.2005.1583120 – 10.1109/cdc.2005.1583120
- Kurula, M. & Zwart, H. Linear wave systems onn-D spatial domains. International Journal of Control 1–24 (2014) doi:10.1080/00207179.2014.993337 – 10.1080/00207179.2014.993337
- Trenchant, V., Fares, Y., Ramirez, H. & Le Gorrec, Y. A port-Hamiltonian formulation of a 2D boundary controlled acoustic system. IFAC-PapersOnLine vol. 48 235–240 (2015) – 10.1016/j.ifacol.2015.10.245
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- Model Reference Adaptive Control. The Control Systems Handbook 843–862 (2018) doi:10.1201/b10384-79 – 10.1201/b10384-79
- Hannaford, B. & Jee-Hwan Ryu. Time-domain passivity control of haptic interfaces. IEEE Transactions on Robotics and Automation vol. 18 1–10 (2002) – 10.1109/70.988969
- Ryu, J.-H., Kwon, D.-S. & Hannaford, B. Stable Teleoperation With Time-Domain Passivity Control. IEEE Transactions on Robotics and Automation vol. 20 365–373 (2004) – 10.1109/tra.2004.824689
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Franken, M., Stramigioli, S., Misra, S., Secchi, C. & Macchelli, A. Bilateral Telemanipulation With Time Delays: A Two-Layer Approach Combining Passivity and Transparency. IEEE Transactions on Robotics vol. 27 741–756 (2011) – 10.1109/tro.2011.2142430
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- macchelli, Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach. ch Infinite-Dimensional Port-Hamiltonian Systems (2009)
- van der schaft, L2 -Gain and Passivity Techniques in Nonlinear Control ser Communication and Control Engineering (2000)
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- maschke, Port controlled Hamiltonian systems: modeling origins and system theoretic properties. Nonlinear Control Systems (NOLCOS 1992) Proceedings of the 3rd IFAC Symposium on (1992)
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters vol. 68 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control vol. 19 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- maschke, Boundary energy shaping of linear distributed port-Hamiltonian systems. Lagrangian and Hamiltonian Methods for Nonlinear Control (LHMNLC 2012) Proceedings of the 4th IFAC Workshop on (2012)
- Ryu, J.-H., Kwon, D.-S. & Hannaford, B. Control of a Flexible Manipulator With Noncollocated Feedback: Time-Domain Passivity Approach. IEEE Transactions on Robotics vol. 20 776–780 (2004) – 10.1109/tro.2004.829454
- Johnsen, J. K., Dorfler, F. & Allgower, F. L<inf>2</inf>-gain of Port-Hamiltonian systems and application to a biochemical fermenter model. 2008 American Control Conference 153–158 (2008) doi:10.1109/acc.2008.4586483 – 10.1109/acc.2008.4586483