Port-based Modelling and Control of the Mindlin Plate
Authors
A. Macchelli, C. Melchiorri, L. Bassi
Abstract
The purpose of this paper is to show how the Mindlin model of a plate can be fruitfully described within the framework of distributed port Hamiltonian systems (dpH systems) so that rather simple and elegant considerations can be drawn regarding both the modeling and control of this mechanical system. Once the distributed port Hamiltonian (dpH) model of the plate is introduced, a simple boundary or distributed control methodology based on damping injection is discussed.
Citation
- Journal: Proceedings of the 44th IEEE Conference on Decision and Control
- Year: 2006
- Volume:
- Issue:
- Pages: 5989–5994
- Publisher: IEEE
- DOI: 10.1109/cdc.2005.1583120
BibTeX
@inproceedings{Macchelli,
title={{Port-based Modelling and Control of the Mindlin Plate}},
DOI={10.1109/cdc.2005.1583120},
booktitle={{Proceedings of the 44th IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Macchelli, A. and Melchiorri, C. and Bassi, L.},
pages={5989--5994}
}
References
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Thomas, J. W. Numerical Partial Differential Equations: Finite Difference Methods. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4899-7278-1 – 10.1007/978-1-4899-7278-1
- Mindlin, R. D., Schacknow, A. & Deresiewicz, H. Flexural Vibrations of Rectangular Plates. The Collected Papers of Raymond D. Mindlin Volume I 337–343 (1989) doi:10.1007/978-1-4613-8865-4_45 – 10.1007/978-1-4613-8865-4_45
- renardy, An Introduction to Partial Differential Equations. ser Texts in Applied Mathematics (2004)
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Mindlin, R. D. Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates. Journal of Applied Mechanics vol. 18 31–38 (1951) – 10.1115/1.4010217
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- macchelli, Port Hamiltonian formulation of infinite dimensional systems. H. Boundary control by interconnection. Proc 43th IEEE Conf on Decision and Control (2004)
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Van der Schaft, A. J. & Maschke, B. M. Fluid dynamical systems as Hamiltonian boundary control systems. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 5 4497–4502 – 10.1109/cdc.2001.980911
- Byrnes, C. I., Gilliam, D. S., Isidori, A. & Shubov, V. I. Static and dynamic controllers for boundary controlled distributed parameter systems. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3324-3325 Vol.3 (2004) doi:10.1109/cdc.2004.1428995 – 10.1109/cdc.2004.1428995
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- maschke, Port controlled Hamiltonian systems: Modeling origins and system theoretic properties. Proc Third Conf on Nonlinear Control Systems (NOLCOS) (1992)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems I. Modeling. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3762-3767 Vol.4 (2004) doi:10.1109/cdc.2004.1429324 – 10.1109/cdc.2004.1429324
- macchelli, Distributed port-Hamiltonian formulation of infinite dimensional systems. Proc 16th International Symposium on Mathematical Theory of Networks and Systems (MTNS2004) (2004)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Multi-variable port Hamiltonian model of piezoelectric material. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566) vol. 1 897–902 – 10.1109/iros.2004.1389466
- swaters, Introduction to Hamiltonian fluid dynamics and stability theory. Chapman & Hall / CRC (2000)