L<inf>2</inf>-gain of Port-Hamiltonian systems and application to a biochemical fermenter model
Authors
Jorgen K. Johnsen, Florian Dorfler, Frank Allgower
Abstract
We consider the Lscr2-gain of nonlinear Port-Hamiltonian systems. Using the Hamiltonian and an additional scaling matrix, we show that an upper bound on the Lscr2-gain can be computed by solving a matrix inequality. The Lscr2-gain is typically used in combination with the small-gain theorem. In particular it can be used to guarantee robust stability with respect to gain-bounded model uncertainties. This application of the Lscr2-gain is demonstrated with a biochemical fermentation process where the specific cell growth rate is unknown but contained in a parameter interval.
Citation
- Journal: 2008 American Control Conference
- Year: 2008
- Volume:
- Issue:
- Pages: 153–158
- Publisher: IEEE
- DOI: 10.1109/acc.2008.4586483
BibTeX
@inproceedings{Johnsen_2008,
title={{L<inf>2</inf>-gain of Port-Hamiltonian systems and application to a biochemical fermenter model}},
DOI={10.1109/acc.2008.4586483},
booktitle={{2008 American Control Conference}},
publisher={IEEE},
author={Johnsen, Jorgen K. and Dorfler, Florian and Allgower, Frank},
year={2008},
pages={153--158}
}
References
- hangos, Analysis and Control of Nonlinear Process Systems (2004)
- (0)
- Gahinet, P. & Apkarian, P. A linear matrix inequality approach toH∞control. International Journal of Robust and Nonlinear Control vol. 4 421–448 (1994) – 10.1002/rnc.4590040403
- Kaszkurewicz, E. & Bhaya, A. Matrix Diagonal Stability in Systems and Computation. (Birkhäuser Boston, 2000). doi:10.1007/978-1-4612-1346-8 – 10.1007/978-1-4612-1346-8
- Arcak, M. & Sontag, E. D. Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica vol. 42 1531–1537 (2006) – 10.1016/j.automatica.2006.04.009
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- maschke, modeling and control of physical systems: an approach based on energy and interconnection. Proc 14th MTNS Perpignan (2000)
- Fossas, E., Ros, R. M. & Sira-Ramírez, H. Passivity-Based Control of a Bioreactor System. Journal of Mathematical Chemistry vol. 36 347–360 (2004) – 10.1023/b:jomc.0000044522.36742.4b
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Euler-Lagrange systems. Communications and Control Engineering 15–37 (1998) doi:10.1007/978-1-4471-3603-3_2 – 10.1007/978-1-4471-3603-3_2
- Johnsen, J. K. & Allöwer, F. Interconnection and Damping Assignment Passivity-Based Control of a Four-Tank System. Lecture Notes in Control and Information Sciences 111–122 doi:10.1007/978-3-540-73890-9_8 – 10.1007/978-3-540-73890-9_8
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- khalil, Nonlinear Systems (2002)