Port-Hamiltonian realizations of non-minimal linear time-invariant systems
Authors
Christopher Beattie, Volker Mehrmann, Hongguo Xu
Abstract
Numerical methods for developing port-Hamiltonian representations of general linear time-invariant systems are studied. The approach extends previous port-Hamiltonian characterizations to include the general non-minimal case and the case where the feedthrough term fails to have an invertible symmetric part. The resulting construction is able to identify infeasibility when the system fails to be port-Hamiltonian, and allows for the incorporation of perturbations in order to arrive at a nearby port-Hamiltonian system. Results are illustrated via numerical examples.
Keywords
93a30, 93b11, 93b17, even pencil, kalman-yakubovich-popov inequality, lyapunov inequality, passivity, port-hamiltonian system, quadratic eigenvalue problem, stability, system transformation
Citation
- Journal: Mathematics of Control, Signals, and Systems
- Year: 2026
- Volume:
- Issue:
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00498-025-00432-w
BibTeX
@article{Beattie_2026,
title={{Port-Hamiltonian realizations of non-minimal linear time-invariant systems}},
ISSN={1435-568X},
DOI={10.1007/s00498-025-00432-w},
journal={Mathematics of Control, Signals, and Systems},
publisher={Springer Science and Business Media LLC},
author={Beattie, Christopher and Mehrmann, Volker and Xu, Hongguo},
year={2026}
}References
- Alam R, Bora S, Karow M, Mehrmann V, Moro J (2011) Perturbation Theory for Hamiltonian Matrices and the Distance to Bounded-Realness. SIAM J Matrix Anal & Appl 32(2):484–514. https://doi.org/10.1137/10079464 – 10.1137/10079464x
- Alpay D, Lewkowicz I (2011) The positive real lemma and construction of all realizations of generalized positive rational functions. Systems & Control Letters 60(12):985–993. https://doi.org/10.1016/j.sysconle.2011.08.00 – 10.1016/j.sysconle.2011.08.008
- Anderson B, Moylan P (1974) Synthesis of linear time-varying passive networks. IEEE Trans Circuits Syst 21(5):678–687. https://doi.org/10.1109/tcs.1974.108392 – 10.1109/tcs.1974.1083926
- Bankmann D, Mehrmann V, Nesterov Y, Van Dooren P (2020) Computation of the Analytic Center of the Solution Set of the Linear Matrix Inequality Arising in Continuous- and Discrete-Time Passivity Analysis. Vietnam J Math 48(4):633–659. https://doi.org/10.1007/s10013-020-00427- – 10.1007/s10013-020-00427-x
- Beattie C, Gugercin S (2011) Structure-preserving model reduction for nonlinear port-Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 6564–656 – 10.1109/cdc.2011.6161504
- Beattie CA, Mehrmann V, Van Dooren P (2019) Robust port-Hamiltonian representations of passive systems. Automatica 100:182–186. https://doi.org/10.1016/j.automatica.2018.11.01 – 10.1016/j.automatica.2018.11.013
- Beattie C, Mehrmann V, Xu H, Zwart H (2018) Linear port-Hamiltonian descriptor systems. Math Control Signals Syst 30(4). https://doi.org/10.1007/s00498-018-0223- – 10.1007/s00498-018-0223-3
- Benner P (1997) Numerical solution of special algebraic Riccati equations via an exact line search method. 1997 European Control Conference (ECC) 3136–314 – 10.23919/ecc.1997.7082591
- P Benner, Dynamical Systems (1999)
- Benner P, Losse P, Mehrmann V, Voigt M (2015) Numerical Linear Algebra Methods for Linear Differential-Algebraic Equations. Differential-Algebraic Equations Forum 117–17 – 10.1007/978-3-319-22428-2_3
- Benner P, Werner SWR (2020) MORLAB – A Model Order Reduction Framework in MATLAB and Octave. Lecture Notes in Computer Science 432–44 – 10.1007/978-3-030-52200-1_43
- Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear Matrix Inequalities in System and Control Theor – 10.1137/1.9781611970777
- Brull T, Schroder C (2013) Dissipativity Enforcement via Perturbation of Para-Hermitian Pencils. IEEE Trans Circuits Syst I 60(1):164–177. https://doi.org/10.1109/tcsi.2012.221573 – 10.1109/tcsi.2012.2215731
- R Byers, Electron Trans Numer Anal (2007)
- Byrnes CI, Isidori A (2003) Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation. IEEE Trans Automat Contr 48(10):1712–1723. https://doi.org/10.1109/tac.2003.81792 – 10.1109/tac.2003.817926
- Byrnes CI, Isidori A, Willems JC (1991) Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans Automat Contr 36(11):1228–1240. https://doi.org/10.1109/9.10093 – 10.1109/9.100932
- Copeland BR, Safonov MG (1992) A Generalized Eigenproblem Solution for Singular H2 and H∞ Problems. Control and Dynamic Systems 331–39 – 10.1016/b978-0-12-012750-4.50015-9
- Demmel J, Kågström B (1993) The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I. ACM Trans Math Softw 19(2):160–174. https://doi.org/10.1145/152613.15261 – 10.1145/152613.152615
- Demmel J, Kågström B (1993) The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II. ACM Trans Math Softw 19(2):175–201. https://doi.org/10.1145/152613.15261 – 10.1145/152613.152616
- Faulwasser T, Maschke B, Philipp F, Schaller M, Worthmann K (2022) Optimal Control of Port-Hamiltonian Descriptor Systems with Minimal Energy Supply. SIAM J Control Optim 60(4):2132–2158. https://doi.org/10.1137/21m142772 – 10.1137/21m1427723
- Freiling G, Mehrmann V, Xu H (2002) Existence, Uniqueness, and Parametrization of Lagrangian Invariant Subspaces. SIAM J Matrix Anal & Appl 23(4):1045–1069. https://doi.org/10.1137/s089547980037722 – 10.1137/s0895479800377228
- GH Golub, Matrix Computations (1996)
- Gräbner N, Mehrmann V, Quraishi S, Schröder C, von Wagner U (2016) Numerical methods for parametric model reduction in the simulation of disk brake squeal. Z Angew Math Mech 96(12):1388–1405. https://doi.org/10.1002/zamm.20150021 – 10.1002/zamm.201500217
- Grivet-Talocia S (2004) Passivity Enforcement via Perturbation of Hamiltonian Matrices. IEEE Trans Circuits Syst I 51(9):1755–1769. https://doi.org/10.1109/tcsi.2004.83452 – 10.1109/tcsi.2004.834527
- Gugercin S, Polyuga RV, Beattie C, van der Schaft A (2012) Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48(9):1963–1974. https://doi.org/10.1016/j.automatica.2012.05.05 – 10.1016/j.automatica.2012.05.052
- Guo C-H, Lancaster P (1998) Analysis and modificaton of Newton’s method for algebraic Riccati equations. Math Comp 67(223):1089–1105. https://doi.org/10.1090/s0025-5718-98-00947- – 10.1090/s0025-5718-98-00947-8
- Hill DJ, Moylan PJ (1980) Dissipative Dynamical Systems: Basic Input-Output and State Properties. Journal of the Franklin Institute 309(5):327–357. https://doi.org/10.1016/0016-0032(80)90026- – 10.1016/0016-0032(80)90026-5
- Hinrichsen D, Pritchard AJ (2005) Mathematical Systems Theory I. Springer Berlin Heidelber – 10.1007/b137541
- Horn RA, Johnson CR (1985) Matrix Analysi – 10.1017/cbo9780511810817
- Jacob B, Zwart HJ (2012) Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces. Springer Base – 10.1007/978-3-0348-0399-1
- T Kailath, Linear systems (1980)
- Kottenstette N, Antsaklis PJ (2010) Relationships between positive real, passive dissipative, & positive systems. Proceedings of the 2010 American Control Conference 409–41 – 10.1109/acc.2010.5530779
- Kunkel P, Mehrmann V (2022) Local and Global Canonical Forms for Differential-Algebraic Equations with Symmetries. Vietnam J Math 51(1):177–198. https://doi.org/10.1007/s10013-022-00596- – 10.1007/s10013-022-00596-x
- Kunkel P, Mehrmann V (2024) Differential-Algebraic Equations. EMS Textbooks in Mathematic – 10.4171/etb/28
- Kunkel P, Mehrmann V, Scholz L (2013) Self-adjoint differential-algebraic equations. Math Control Signals Syst 26(1):47–76. https://doi.org/10.1007/s00498-013-0109- – 10.1007/s00498-013-0109-3
- Lancaster P, Rodman L (1995) Algebraic Riccati Equations. Oxford University PressOxfor – 10.1093/oso/9780198537953.001.0001
- P Lancaster, The Theory of Matrices (1985)
- Maschke BM, Van Der Schaft AJ, Breedveld PC (1992) An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329(5):923–966. https://doi.org/10.1016/s0016-0032(92)90049- – 10.1016/s0016-0032(92)90049-m
- Mehl C, Mehrmann V, Wojtylak M (2018) Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM J Matrix Anal & Appl 39(3):1489–1519. https://doi.org/10.1137/18m116427 – 10.1137/18m1164275
- V Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution (1991)
- Mehrmann V, Van Dooren P (2020) Optimal robustness of passive discrete-time systems. IMA Journal of Mathematical Control and Information 37(4):1248–1269. https://doi.org/10.1093/imamci/dnaa01 – 10.1093/imamci/dnaa013
- Mehrmann V, Van Dooren PM (2020) Optimal Robustness of Port-Hamiltonian Systems. SIAM J Matrix Anal Appl 41(1):134–151. https://doi.org/10.1137/19m125909 – 10.1137/19m1259092
- Mehrmann V, Morandin R (2019) Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–686 – 10.1109/cdc40024.2019.9030180
- Mehrmann V, Unger B (2023) Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32:395–515. https://doi.org/10.1017/s096249292200008 – 10.1017/s0962492922000083
- Mehrmann V, van der Schaft A (2023) Differential–algebraic systems with dissipative Hamiltonian structure. Math Control Signals Syst 35(3):541–584. https://doi.org/10.1007/s00498-023-00349- – 10.1007/s00498-023-00349-2
- Mehrmann V, Xu H (2000) Numerical methods in control. Journal of Computational and Applied Mathematics 123(1–2):371–394. https://doi.org/10.1016/s0377-0427(00)00392- – 10.1016/s0377-0427(00)00392-7
- Mehrmann V, Xu H (2024) Eigenstructure Perturbations for a Class of Hamiltonian Matrices and Solutions of Related Riccati Inequalities. SIAM J Matrix Anal Appl 45(3):1335–1360. https://doi.org/10.1137/23m161956 – 10.1137/23m1619563
- (2001) Putting energy back in control. IEEE Control Syst 21(2):18–33. https://doi.org/10.1109/37.91539 – 10.1109/37.915398
- Ortega R, van der Schaft A, Maschke B, Escobar G (2002) Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4):585–596. https://doi.org/10.1016/s0005-1098(01)00278- – 10.1016/s0005-1098(01)00278-3
- Paige C, Van Loan C (1981) A Schur decomposition for Hamiltonian matrices. Linear Algebra and its Applications 41:11–32. https://doi.org/10.1016/0024-3795(81)90086- – 10.1016/0024-3795(81)90086-0
- Polyuga RV, van der Schaft A (2010) Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46(4):665–672. https://doi.org/10.1016/j.automatica.2010.01.01 – 10.1016/j.automatica.2010.01.018
- Schaft AJ (2004) Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–16 – 10.1007/978-3-7091-2774-2_9
- van der Schaft A (2007) Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–136 – 10.4171/022-3/65
- AJ van der Schaft, Arch Elektron Übertragungstech (1995)
- van der Schaft AJ, Maschke BM (2002) Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42(1–2):166–194. https://doi.org/10.1016/s0393-0440(01)00083- – 10.1016/s0393-0440(01)00083-3
- van der Schaft AJ, Maschke BM (2013) Port-Hamiltonian Systems on Graphs. SIAM J Control Optim 51(2):906–937. https://doi.org/10.1137/11084009 – 10.1137/110840091
- van der Schaft A, Mehrmann V (2023) Linear port-Hamiltonian DAE systems revisited. Systems & Control Letters 177:105564. https://doi.org/10.1016/j.sysconle.2023.10556 – 10.1016/j.sysconle.2023.105564
- Van Dooren P (1979) The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra and its Applications 27:103–140. https://doi.org/10.1016/0024-3795(79)90035- – 10.1016/0024-3795(79)90035-1
- Weiss H, Wang Q, Speyer JL (1994) System characterization of positive real conditions. IEEE Trans Automat Contr 39(3):540–544. https://doi.org/10.1109/9.28075 – 10.1109/9.280753
- Willems JC (1972) Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Arch Rational Mech Anal 45(5):352–393. https://doi.org/10.1007/bf0027649 – 10.1007/bf00276494