Local and Global Canonical Forms for Differential-Algebraic Equations with Symmetries
Authors
Abstract
Linear time-varying differential-algebraic equations with symmetries are studied. The structures that we address are self-adjoint and skew-adjoint systems. Local and global canonical forms under congruence are presented and used to classify the geometric properties of the flow associated with the differential equation as symplectic or generalized orthogonal flow. As applications, the results are applied to the analysis of dissipative Hamiltonian systems arising from circuit simulation and incompressible flow.
Keywords
Differential-algebraic equation; Self-adjoint system; Skew-adjoint system; Dissipative Hamiltonian system; Canonical form under congruence; 37J05; 65L80; 65L05; 65P10; 49K15
Citation
- Journal: Vietnam Journal of Mathematics
- Year: 2023
- Volume: 51
- Issue: 1
- Pages: 177–198
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s10013-022-00596-x
BibTeX
@article{Kunkel_2022,
title={{Local and Global Canonical Forms for Differential-Algebraic Equations with Symmetries}},
volume={51},
ISSN={2305-2228},
DOI={10.1007/s10013-022-00596-x},
number={1},
journal={Vietnam Journal of Mathematics},
publisher={Springer Science and Business Media LLC},
author={Kunkel, Peter and Mehrmann, Volker},
year={2022},
pages={177--198}
}
References
- Altmann, R., Mehrmann, V. & Unger, B. Port-Hamiltonian formulations of poroelastic network models. Mathematical and Computer Modelling of Dynamical Systems vol. 27 429–452 (2021) – 10.1080/13873954.2021.1975137
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics (Springer New York, 1991). doi:10.1007/978-1-4612-3172-1 – 10.1007/978-1-4612-3172-1
- Campbell, S. L. A General Form for Solvable Linear Time Varying Singular Systems of Differential Equations. SIAM Journal on Mathematical Analysis vol. 18 1101–1115 (1987) – 10.1137/0518081
- Campbell, S. L. Linearization of DAEs along trajectories. ZAMP Zeitschrift f�r angewandte Mathematik und Physik vol. 46 70–84 (1995) – 10.1007/bf00952257
- V Doležal. Doležal, V.: The existence of a continuous basis of a certain subspace of Er which depends on a parameter. Cas. Pro. Pest. Mat. 89, 466–468 (1964) (1964)
- Donelan, P. S. Singularity-theoretic methods in robot kinematics. Robotica vol. 25 641–659 (2007) – 10.1017/s0263574707003748
- Domschke, P., Hiller, B., Lang, J., Mehrmann, V., Morandin, R., Tischendorf, C.: Gas network modeling: an overview. Preprint, Collaborative Research Center TRR 154 (2021)
- Egger, H. Structure preserving approximation of dissipative evolution problems. Numerische Mathematik vol. 143 85–106 (2019) – 10.1007/s00211-019-01050-w
- Eich-Soellner, E. & Führer, C. Numerical Methods in Multibody Dynamics. European Consortium for Mathematics in Industry (Vieweg+Teubner Verlag, 1998). doi:10.1007/978-3-663-09828-7 – 10.1007/978-3-663-09828-7
- Emmrich, E. & Mehrmann, V. Operator Differential-Algebraic Equations Arising in Fluid Dynamics. Computational Methods in Applied Mathematics vol. 13 443–470 (2013) – 10.1515/cmam-2013-0018
- Formaggia, L., Gerbeau, J. F., Nobile, F. & Quarteroni, A. On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics and Engineering vol. 191 561–582 (2001) – 10.1016/s0045-7825(01)00302-4
- L Formaggia. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. MS&A, vol. 1. Springer, Milano (2010) (2010)
- Golo, G., van der Schaft, A.J., Breedveld, P.C., Maschke, B.M.: Hamiltonian formulation of bond graphs. In: Johansson, R., Rantzer, A. (eds.) Nonlinear and Hybrid Systems in Automotive Control, pp. 351–372. Springer, Heidelberg (2003)
- E Hairer. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002) (2002)
- Hall, B. C. Lie Groups, Lie Algebras, and Representations. Graduate Texts in Mathematics (Springer New York, 2003). doi:10.1007/978-0-387-21554-9 – 10.1007/978-0-387-21554-9
- Hauschild, S.-A. et al. Port-Hamiltonian Modeling of District Heating Networks. Differential-Algebraic Equations Forum 333–355 (2020) doi:10.1007/978-3-030-53905-4_11 – 10.1007/978-3-030-53905-4_11
- Hiller, M. H. & Hirsch, K. Multibody system dynamics and mechatronics. ZAMM vol. 86 87–109 (2006) – 10.1002/zamm.200510253
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Kunkel, P. A smooth version of Sylvester’s law of inertia and its numerical realization. The Electronic Journal of Linear Algebra vol. 36 542–560 (2020) – 10.13001/ela.2020.5321
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Kunkel, P. & Mehrmann, V. Optimal control for unstructured nonlinear differential-algebraic equations of arbitrary index. Mathematics of Control, Signals, and Systems vol. 20 227–269 (2008) – 10.1007/s00498-008-0032-1
- Kunkel, P. & Mehrmann, V. Discretization of inherent ODEs and the geometric integration of DAEs with symmetries. BIT Numerical Mathematics vol. 63 (2023) – 10.1007/s10543-023-00966-y
- Kunkel, P., Mehrmann, V. & Scholz, L. Self-adjoint differential-algebraic equations. Mathematics of Control, Signals, and Systems vol. 26 47–76 (2013) – 10.1007/s00498-013-0109-3
- Layton, W. Introduction to the Numerical Analysis of Incompressible Viscous Flows. (2008) doi:10.1137/1.9780898718904 – 10.1137/1.9780898718904
- Leimkuhler, B. & Reich, S. Symplectic integration of constrained Hamiltonian systems. Mathematics of Computation vol. 63 589–589 (1994) – 10.1090/s0025-5718-1994-1250772-7
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- HM Paynter. Paynter, H.M.: Analysis and Design Of Engineering Systems. MIT Press, Cambridge (1961) (1961)
- A Quarteroni. Quarteroni, A., Formaggia, L.: Mathematical modelling and numerical simulation of the cardiovascular system. Handb. Numer. Anal. 12, 3–127 (2004) (2004)
- Quarteroni, A., Manzoni, A. & Vergara, C. The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications. Acta Numerica vol. 26 365–590 (2017) – 10.1017/s0962492917000046
- Quarteroni, A. Numerical Models for Differential Problems. (Springer Milan, 2009). doi:10.1007/978-88-470-1071-0 – 10.1007/978-88-470-1071-0
- Quarteroni, A., Lassila, T., Rossi, S. & Ruiz-Baier, R. Integrated Heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function. Computer Methods in Applied Mechanics and Engineering vol. 314 345–407 (2017) – 10.1016/j.cma.2016.05.031
- Rannacher, R. Finite Element Methods for the Incompressible Navier-Stokes Equations. Fundamental Directions in Mathematical Fluid Mechanics 191–293 (2000) doi:10.1007/978-3-0348-8424-2_6 – 10.1007/978-3-0348-8424-2_6
- H-G Roos. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods For Singularly Perturbed Differential Equations. Springer, Berlin (2008) (2008)
- Schiehlen, W. (ed.): Advanced Multibody System Dynamics. Kluwer Academic Publishers, Stuttgart (1993) (1993)
- K Schlacher. Schlacher, K., Kugi, A.: Automatic control of mechatronic systems. Int. J. Appl. Math. Comput. Sci. 11, 131–164 (2001) (2001)
- Scholz, L. Condensed Forms for Linear Port-Hamiltonian Descriptor Systems. The Electronic Journal of Linear Algebra vol. 35 65–89 (2019) – 10.13001/1081-3810.3638
- R Temam. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North Holland, Amsterdam (1977) (1977)
- JU Thoma. Thoma, J.U.: Introduction to Bond Graphs and Their Applications. Pergamon Press, Oxford (1975) (1975)
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002