On Dirac structure of infinite-dimensional stochastic port-Hamiltonian systems
Authors
François Lamoline, Anthony Hastir
Abstract
Stochastic infinite-dimensional port-Hamiltonian systems (SPHSs) with multiplicative Gaussian white noise are considered. In this article we extend the notion of Dirac structure for deterministic distributed parameter port-Hamiltonian systems to a stochastic ones by adding some additional stochastic ports. Using the Stratonovich formalism of the stochastic integral, the proposed extended interconnection of ports for SPHSs is proved to still form a Dirac structure. This constitutes our main contribution. We then deduce that the interconnection between (stochastic) Dirac structures is again a (stochastic) Dirac structure under some assumptions. These interconnection results are applied on a system composed of a stochastic vibrating string actuated at the boundary by a mass–spring system with external input and output. This work is motivated by the problem of boundary control of SPHSs and will serve as a foundation to the development of stabilizing methods.
Keywords
Infinite-dimensional systems; Stochastic partial differential equations; Dirac structures; Boundary control
Citation
- Journal: European Journal of Control
- Year: 2024
- Volume: 75
- Issue:
- Pages: 100924
- Publisher: Elsevier BV
- DOI: 10.1016/j.ejcon.2023.100924
BibTeX
@article{Lamoline_2024,
title={{On Dirac structure of infinite-dimensional stochastic port-Hamiltonian systems}},
volume={75},
ISSN={0947-3580},
DOI={10.1016/j.ejcon.2023.100924},
journal={European Journal of Control},
publisher={Elsevier BV},
author={Lamoline, François and Hastir, Anthony},
year={2024},
pages={100924}
}
References
- Caballeria, J., Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian model for a class of piezoelectric actuators. IFAC-PapersOnLine vol. 54 436–441 (2021) – 10.1016/j.ifacol.2021.10.393
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Chow, (2014)
- Cordoni, (2022)
- Cordoni, (2019)
- Curtain, (1978)
- Da Prato, (2014)
- Duan, (2014)
- Fang, Z. & Gao, C. Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity. IEEE Transactions on Automatic Control vol. 62 4159–4166 (2017) – 10.1109/tac.2017.2676619
- Fang, Z. & Gao, C. Time-domain boundedness of noise-to-state exponentially stable systems. ESAIM: Control, Optimisation and Calculus of Variations vol. 26 105 (2020) – 10.1051/cocv/2020037
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control vol. 6 349–385 (1968) – 10.1137/0306025
- Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica vol. 97 134–142 (2018) – 10.1016/j.automatica.2018.07.031
- Iftime, Interconnection of Dirac structures via kernel/image representation. (2011)
- Jacob, (2012)
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Lamoline, (2019)
- Lamoline, F. Passivity of boundary controlled and observed stochastic port-Hamiltonian systems subject to multiplicative and input noise. European Journal of Control vol. 62 41–46 (2021) – 10.1016/j.ejcon.2021.06.010
- Lamoline, F. & Winkin, J. J. On stochastic port-hamiltonian systems with boundary control and observation. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 2492–2497 (2017) doi:10.1109/cdc.2017.8264015 – 10.1109/cdc.2017.8264015
- Lamoline, F. & Winkin, J. J. Well-Posedness of Boundary Controlled and Observed Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 65 4258–4264 (2020) – 10.1109/tac.2019.2954481
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Liu, (2005)
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters vol. 68 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Mora, L. A., Gorrec, Y. L., Ramírez, H. & Maschke, B. Irreversible port-Hamiltonian modelling of 1D compressible fluids. IFAC-PapersOnLine vol. 54 64–69 (2021) – 10.1016/j.ifacol.2021.11.056
- Mora, L. A., Gorrec, Y. L., Ramirez, H., Yuz, J. & Maschke, B. Dissipative port-Hamiltonian Formulation of Maxwell Viscoelastic Fluids. IFAC-PapersOnLine vol. 54 430–435 (2021) – 10.1016/j.ifacol.2021.10.392
- Lázaro-Camí, J.-A. & Ortega, J.-P. Stochastic hamiltonian dynamical systems. Reports on Mathematical Physics vol. 61 65–122 (2008) – 10.1016/s0034-4877(08)80003-1
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Rashad Hashem, Twenty years of distributed port-Hamiltonian systems: A literature review. IMA Journal of Mathematical Control and Information (2020)
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, (2007)