Passivity of boundary controlled and observed stochastic port-Hamiltonian systems subject to multiplicative and input noise
Authors
Abstract
We study infinite-dimensional stochastic port-Hamiltonian systems (SPHSs) having multiplicative and boundary input noise. Using Itô and Stratonovich integrals on Hilbert spaces, a formal mathematical description of this specific class of stochastic systems is presented, and some properties, including almost sure and weak passivity, are investigated. By considering dissipative effects, we derive a condition for SPHSs to be weakly passive. Finally, the stochastic port-Hamiltonian framework and the passivity concepts are illustrated on the example of an inhomogeneous vibrating string subject to random damping and state noises.
Keywords
Boundary control; Boundary observation; Port-Hamiltonian systems; Stochastic partial differential equations; Infinite-dimensional systems; Passivity
Citation
- Journal: European Journal of Control
- Year: 2021
- Volume: 62
- Issue:
- Pages: 41–46
- Publisher: Elsevier BV
- DOI: 10.1016/j.ejcon.2021.06.010
- Note: 2021 European Control Conference Special Issue
BibTeX
@article{Lamoline_2021,
title={{Passivity of boundary controlled and observed stochastic port-Hamiltonian systems subject to multiplicative and input noise}},
volume={62},
ISSN={0947-3580},
DOI={10.1016/j.ejcon.2021.06.010},
journal={European Journal of Control},
publisher={Elsevier BV},
author={Lamoline, Francois},
year={2021},
pages={41--46}
}
References
- Chow, Stochastic Partial Differential Equations, Second Edition. (2014)
- Cordoni,
- Curtain, R. F. Stability of stochastic partial differential equation. Journal of Mathematical Analysis and Applications vol. 79 352–369 (1981) – 10.1016/0022-247x(81)90031-7
- Da Prato, G. & Zabczyk, J. Stochastic Equations in Infinite Dimensions. (2014) doi:10.1017/cbo9781107295513 – 10.1017/cbo9781107295513
- Duan, Effective Dynamics of Stochastic Partial Differential Equations. (2014)
- Duncan, T. E., Maslowski, B. & Pasik-Duncan, B. Adaptive Boundary and Point Control of Linear Stochastic Distributed Parameter Systems. SIAM Journal on Control and Optimization vol. 32 648–672 (1994) – 10.1137/s0363012992228726
- Fang, Z. & Gao, C. Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity. IEEE Transactions on Automatic Control vol. 62 4159–4166 (2017) – 10.1109/tac.2017.2676619
- Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM Journal on Control and Optimization vol. 37 1848–1864 (1999) – 10.1137/s0363012997317478
- Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica vol. 97 134–142 (2018) – 10.1016/j.automatica.2018.07.031
- Jacob, (2012)
- Lamoline, (2019)
- Lamoline, On stochastic port-Hamiltonian systems with boundary control and observation. (2017)
- Lamoline, F. & Winkin, J. J. Well-Posedness of Boundary Controlled and Observed Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 65 4258–4264 (2020) – 10.1109/tac.2019.2954481
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Lü, Q. Stochastic Well-Posed Systems and Well-Posedness of Some Stochastic Partial Differential Equations with Boundary Control and Observation. SIAM Journal on Control and Optimization vol. 53 3457–3482 (2015) – 10.1137/151002605
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Maschke, Port-controlled Hamiltonian systems: modelling origins and system theoretic properties. (1992)
- Da Prato, G. & J., Z. Evolution equations with white-noise boundary conditions. Stochastics and Stochastic Reports vol. 42 167–182 (1993) – 10.1080/17442509308833817
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Tucsnak, M. & Weiss, G. Observation and Control for Operator Semigroups. (Birkhäuser Basel, 2009). doi:10.1007/978-3-7643-8994-9 – 10.1007/978-3-7643-8994-9
- Twardowska, On the relation between the Itō and Stratonovich integrals in Hilbert spaces. Ann. Math. Silesianae (2004)
- Villegas, (2007)