Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity
Authors
Abstract
It is a universal phenomenon that the inputs of a real stochastic process are disturbed. However, this phenomenon is often ignored when stochastic port-Hamiltonian system (SPHS) is used for modeling, in which only the disturbance on the states is considered. For this reason, an extension of SPHS, named input-disturbed SPHS (Id-SPHS), is proposed to describe the inputs disturbance as well as the states one. The definition and some properties of Id-SPHS, including structure invariance and stochastic passivity, are presented one by one to construct the basic framework of Id-SPHS. Based on this framework, a passivity-based controller is further developed to stabilize Id-SPHS at its steady state. The control strategy is demonstrated in a thermodynamic heat conduction process with the results supporting strongly the proposed Id-SPHS theory.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2017
- Volume: 62
- Issue: 8
- Pages: 4159–4166
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2017.2676619
BibTeX
@article{Fang_2017,
title={{Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity}},
volume={62},
ISSN={1558-2523},
DOI={10.1109/tac.2017.2676619},
number={8},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Fang, Zhou and Gao, Chuanhou},
year={2017},
pages={4159--4166}
}
References
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- Macchelli, A. Passivity-Based Control of Implicit Port-Hamiltonian Systems. SIAM Journal on Control and Optimization vol. 52 2422–2448 (2014) – 10.1137/130918228
- Satoh, S. & Fujimoto, K. On passivity based control of stochastic port-Hamiltonian systems. 2008 47th IEEE Conference on Decision and Control 4951–4956 (2008) doi:10.1109/cdc.2008.4738733 – 10.1109/cdc.2008.4738733
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Lin, Z., Liu, J., Lin, Y. & Zhang, W. Nonlinear stochastic passivity, feedback equivalence and global stabilization. International Journal of Robust and Nonlinear Control vol. 22 999–1018 (2011) – 10.1002/rnc.1742
- Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM Journal on Control and Optimization vol. 37 1848–1864 (1999) – 10.1137/s0363012997317478
- khasminskii, Stochastic Stability of Differential Equations (2011)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Brogliato, B., Maschke, B., Lozano, R. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2007). doi:10.1007/978-1-84628-517-2 – 10.1007/978-1-84628-517-2
- Jeltsema, D. & Doria-Cerezo, A. Port-Hamiltonian Formulation of Systems With Memory. Proceedings of the IEEE vol. 100 1928–1937 (2012) – 10.1109/jproc.2011.2164169
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1994). doi:10.1007/978-1-4612-2682-6 – 10.1007/978-1-4612-2682-6
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- desoer, Feedback Systems Input-Output Properties (1975)
- Ruszkowski, M., Garcia‐Osorio, V. & Ydstie, B. E. Passivity based control of transport reaction systems. AIChE Journal vol. 51 3147–3166 (2005) – 10.1002/aic.10543
- Li, K., Chan, K. H., Ydstie, B. E. & Bindlish, R. Passivity-based adaptive inventory control. Journal of Process Control vol. 20 1126–1132 (2010) – 10.1016/j.jprocont.2010.06.024
- Mao, X. Stochastic Versions of the LaSalle Theorem. Journal of Differential Equations vol. 153 175–195 (1999) – 10.1006/jdeq.1998.3552
- Kushner, H. J. Stochastic stability. Lecture Notes in Mathematics 97–124 (1972) doi:10.1007/bfb0064937 – 10.1007/bfb0064937
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9