Irreversible port-Hamiltonian modelling of 1D compressible fluids
Authors
Luis A. Mora, Yann Le Gorrec, Héctor Ramírez, Bernhard Maschke
Abstract
In this paper, an irreversible port-Hamiltonian formulation for 1D compressible Newtonian fluids is presented. We separate the fluid dynamics into reversible and irreversible parts. Given the compressibility assumption, we define a state-dependent matrix that modulates the skew-symmetric operators that describe the irreversible part of the fluid dynamics. As a result, we obtain an energy-based formulation that reflects appropriately the first and second laws of Thermodynamics.
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 64–69
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.056
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Mora_2021,
title={{Irreversible port-Hamiltonian modelling of 1D compressible fluids}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.056},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Mora, Luis A. and Gorrec, Yann Le and Ramírez, Héctor and Maschke, Bernhard},
year={2021},
pages={64--69}
}
References
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Duindam, (2009)
- Hauge, E., Aamo, O. M. & Godhavn, J.-M. MODEL BASED PIPELINE MONITORING WITH LEAK DETECTION. IFAC Proceedings Volumes vol. 40 318–323 (2007) – 10.3182/20070822-3-za-2920.00053
- Jacob, (2012)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A., Borja, L. P. & Ortega, R. Control by Interconnection of Distributed Port-Hamiltonian Systems Beyond the Dissipation Obstacle. IFAC-PapersOnLine vol. 48 99–104 (2015) – 10.1016/j.ifacol.2015.10.221
- Macchelli, A., Le Gorrec, Y. & Ramírez, H. Boundary Energy-Shaping Control of an Ideal Compressible Isentropic Fluid in 1-D. IFAC-PapersOnLine vol. 50 5598–5603 (2017) – 10.1016/j.ifacol.2017.08.1105
- Matignon, D. & Hélie, T. A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems. European Journal of Control vol. 19 486–494 (2013) – 10.1016/j.ejcon.2013.10.003
- Mora, L. A., Gorrec, Y. L., Matignon, D., Ramirez, H. & Yuz, J. I. About Dissipative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows. IFAC-PapersOnLine vol. 53 11521–11526 (2020) – 10.1016/j.ifacol.2020.12.604
- Öttinger, H. C. Nonequilibrium thermodynamics for open systems. Physical Review E vol. 73 (2006) – 10.1103/physreve.73.036126
- Polner, M. & van der Vegt, J. J. W. A Hamiltonian vorticity–dilatation formulation of the compressible Euler equations. Nonlinear Analysis: Theory, Methods & Applications vol. 109 113–135 (2014) – 10.1016/j.na.2014.07.005
- Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian formulation of distributed diffusion processes. IFAC-PapersOnLine vol. 49 46–51 (2016) – 10.1016/j.ifacol.2016.10.752
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics vol. 164 104201 (2021) – 10.1016/j.geomphys.2021.104201
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. Journal of Geometry and Physics vol. 164 104199 (2021) – 10.1016/j.geomphys.2021.104199
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3