On stochastic port-hamiltonian systems with boundary control and observation
Authors
Abstract
Stochastic port-Hamiltonian systems on infinite-dimensional spaces governed by Ito stochastic differential equations (SDEs) are introduced and some properties of this new class of systems are studied. They are a stochastic counterpart of boundary controlled port-Hamiltonian systems. The noise process is modelized as a Hilbert space-valued stochastic integral w.r.t. a Wiener process. The theory is illustrated on an example of a vibrating string with an element of randomness.
Citation
- Journal: 2017 IEEE 56th Annual Conference on Decision and Control (CDC)
- Year: 2017
- Volume:
- Issue:
- Pages: 2492–2497
- Publisher: IEEE
- DOI: 10.1109/cdc.2017.8264015
BibTeX
@inproceedings{Lamoline_2017,
title={{On stochastic port-hamiltonian systems with boundary control and observation}},
DOI={10.1109/cdc.2017.8264015},
booktitle={{2017 IEEE 56th Annual Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Lamoline, F. and Winkin, J.J.},
year={2017},
pages={2492--2497}
}
References
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 58, 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Staffans, O. Well-Posed Linear Systems. (2005) doi:10.1017/cbo9780511543197 – 10.1017/cbo9780511543197
- sz -nagy, Sur les contractions de I’espace de Hilbert. Acta Sci Math Szeged (1953)
- tucsnak, Observation and Control for Operator Sernigroups. Birkhauser Advanced Texts Basler Lehrbücher (2009)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Infinite Dimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1978). doi:10.1007/bfb0006761 – 10.1007/bfb0006761
- Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM J. Control Optim. 37, 1848–1864 (1999) – 10.1137/s0363012997317478
- da prato, Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications (2008)
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Hausenblas, E. & Seidler, J. A Note on Maximal Inequality for Stochastic Convolutions. Czechoslovak Mathematical Journal 51, 785–790 (2001) – 10.1023/a:1013717013421
- Curtain, R. F. Stochastic evolution equations with general white noise disturbance. Journal of Mathematical Analysis and Applications 60, 570–595 (1977) – 10.1016/0022-247x(77)90002-6
- chow, Stochastic Partial Differential Equations, Second Edition. Advances in Applied Mathematics (2014)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677