Authors

Satoshi Satoh, Kenji Fujimoto

Abstract

This paper introduces stochastic port-Hamiltonian systems and clarifies some of their properties. Stochastic port-Hamiltonian systems are extension of port-Hamiltonian systems which are used to express various deterministic passive systems. Some properties such as passivity of port-Hamiltonian systems do not generally hold for the stochastic port-Hamiltonian systems. Firstly, we show a necessary and sufficient condition to preserve the stochastic Hamiltonian structure of the original system under time-invariant coordinate transformations. Secondly, we derive a condition to maintain stochastic passivity of the system. Finally, we introduce stochastic generalized canonical transformations and propose a stabilization method based on stochastic passivity.

Citation

  • Journal: IEEE Transactions on Automatic Control
  • Year: 2013
  • Volume: 58
  • Issue: 5
  • Pages: 1139–1153
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/tac.2012.2229791

BibTeX

@article{Satoh_2013,
  title={{Passivity Based Control of Stochastic Port-Hamiltonian Systems}},
  volume={58},
  ISSN={1558-2523},
  DOI={10.1109/tac.2012.2229791},
  number={5},
  journal={IEEE Transactions on Automatic Control},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Satoh, Satoshi and Fujimoto, Kenji},
  year={2013},
  pages={1139--1153}
}

Download the bib file

References

  • Hua Deng, Krstic, M. & Williams, R. J. Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Transactions on Automatic Control vol. 46 1237–1253 (2001) – 10.1109/9.940927
  • Pomet, J.-B. Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems & Control Letters vol. 18 147–158 (1992) – 10.1016/0167-6911(92)90019-o
  • maschke, Port-controlled Hamiltonian systems: Modelling origins and system theoretic properties. Proc 2nd IFAC Symp Nonlin Control Syst (1992)
  • Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
  • Satoh, S. & Fujimoto, K. On passivity based control of stochastic port-Hamiltonian systems. 2008 47th IEEE Conference on Decision and Control 4951–4956 (2008) doi:10.1109/cdc.2008.473873310.1109/cdc.2008.4738733
  • satoh, Stabilization of time-varying stochastic port-Hamiltonian systems based on stochastic passivity. Proc IFAC Symp Nonlinear Control Syst (2010)
  • Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
  • Fujimoto, K. & Sugie, T. Iterative learning control of hamiltonian systems: I/O based optimal control approach. IEEE Transactions on Automatic Control vol. 48 1756–1761 (2003) – 10.1109/tac.2003.817908
  • Satoh, S., Fujimoto, K. & Hyon, S.-H. Gait generation via unified learning optimal control of Hamiltonian systems. Robotica vol. 31 717–732 (2013) – 10.1017/s0263574712000756
  • satoh, Control of Deterministic and Stochastic Hamiltonian Systems Application to Optimal Gait Generation for Walking Robots (2010)
  • Arimoto, S., Kawamura, S. & Miyazaki, F. Bettering operation of Robots by learning. Journal of Robotic Systems vol. 1 123–140 (1984) – 10.1002/rob.4620010203
  • Mao, X. Stochastic Versions of the LaSalle Theorem. Journal of Differential Equations vol. 153 175–195 (1999) – 10.1006/jdeq.1998.3552
  • Fujimoto, K. & Sugie, T. Stabilization of Hamiltonian systems with nonholonomic constraints based on time-varying generalized canonical transformations. Systems & Control Letters vol. 44 309–319 (2001) – 10.1016/s0167-6911(01)00150-5
  • kushner, Stochastic Stability and Control (1967)
  • Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
  • Bucy, R. S. Stability and positive supermartingales. Journal of Differential Equations vol. 1 151–155 (1965) – 10.1016/0022-0396(65)90016-1
  • Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM Journal on Control and Optimization vol. 37 1848–1864 (1999) – 10.1137/s0363012997317478
  • brockett, Differential Geometric Control Theory (1983)
  • mao, Stability of Stochastic Differential Equations with Respect to Semimartingales (1991)
  • Florchinger, P. Feedback Stabilization of Affine in the Control Stochastic Differential Systems by the Control Lyapunov Function Method. SIAM Journal on Control and Optimization vol. 35 500–511 (1997) – 10.1137/s0363012995279961
  • Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control vol. 36 1228–1240 (1991) – 10.1109/9.100932
  • Misawa, T. Conserved quantities and symmetry for stochastic dynamical systems. Physics Letters A vol. 195 185–189 (1994) – 10.1016/0375-9601(94)90150-3
  • Zhu, W. Q. & Huang, Z. L. Nonlinear Dynamics vol. 33 209–224 (2003) – 10.1023/a:1026010007067
  • ikeda, Stochastic Differential Equations and Diffusion Processes (1989)
  • ohsumi, Introduction to Stochastic Systems (2002)
  • Øksendal, B. Stochastic Differential Equations. Universitext (Springer Berlin Heidelberg, 1998). doi:10.1007/978-3-662-03620-4 – 10.1007/978-3-662-03620-4
  • Itô, K. On a Formula Concerning Stochastic Differentials. Selected Papers 169–179 (1987) doi:10.1007/978-1-4612-5370-9_11 – 10.1007/978-1-4612-5370-9_11
  • Kushner, H. J. Stochastic stability. Lecture Notes in Mathematics 97–124 (1972) doi:10.1007/bfb0064937 – 10.1007/bfb0064937
  • khalil, Nonlinear Systems (1996)
  • fujimoto, Stabilization of a class of Hamiltonian systems with nonholonomic constraints via canonical transformations. Proc Eur Control Conf (1999)
  • Isidori, A. Nonlinear Control Systems. Communications and Control Engineering (Springer London, 1995). doi:10.1007/978-1-84628-615-5 – 10.1007/978-1-84628-615-5