Boundary Energy-Shaping Control of an Ideal Compressible Isentropic Fluid in 1-D
Authors
Alessandro Macchelli, Yann Le Gorrec, Héctor Ramírez
Abstract
This paper illustrates a synthesis methodology of asymptotically stabilising, energy-based, boundary control laws for a large class of distributed port-Hamiltonian systems. The result is applied on a non-linear model of an ideal, compressible, isentropic fluid with one-dimensional spatial domain. The idea is to design at first a state feedback law able to perform the energy-shaping task, i.e. able to render the closed-loop system a port-Hamiltonian system with a new Hamiltonian with a minimum at the desired equilibrium. Then, under some assumptions on the existence of solutions and pre-compactness of trajectories, asymptotic stability is obtained via damping injection on the boundary. The result is a consequence of the La Salles Invariance Principle in infinite dimensions.
Keywords
distributed port-Hamiltonian systems; ideal compressible isentropic fluid; boundary control; energy-shaping control; stability of PDEs
Citation
- Journal: IFAC-PapersOnLine
- Year: 2017
- Volume: 50
- Issue: 1
- Pages: 5598–5603
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2017.08.1105
- Note: 20th IFAC World Congress
BibTeX
@article{Macchelli_2017,
title={{Boundary Energy-Shaping Control of an Ideal Compressible Isentropic Fluid in 1-D}},
volume={50},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2017.08.1105},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Macchelli, Alessandro and Le Gorrec, Yann and Ramírez, Héctor},
year={2017},
pages={5598--5603}
}
References
- Curtain, (1995)
- Duindam, (2009)
- Encina, (2015)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Luo, (1999)
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control vol. 19 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Macchelli, A. Stabilisation of a Nonlinear Flexible Beam in Port-Hamiltonian Form. IFAC Proceedings Volumes vol. 46 412–417 (2013) – 10.3182/20130904-3-fr-2041.00115
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters vol. 68 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Macchelli, (2016)
- Macchelli, (2015)
- Macchelli, (2016)
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Infinite-Dimensional Port-Hamiltonian Systems. Modeling and Control of Complex Physical Systems 211–271 (2009) doi:10.1007/978-3-642-03196-0_4 – 10.1007/978-3-642-03196-0_4
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Maschke, (1992)
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Ortega, Putting energy back in control. Control Systems Magazine, IEEE (2001)
- Prieur, C., Winkin, J. & Bastin, G. Robust boundary control of systems of conservation laws. Mathematics of Control, Signals, and Systems vol. 20 173–197 (2008) – 10.1007/s00498-008-0028-x
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Swaters, (2000)
- Ta-Tsien, (1994)
- van der Schaft, (2000)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, (2007)
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176