Infinite-dimensional port-Hamiltonian systems: a system node approach
Authors
Friedrich M. Philipp, Timo Reis, Manuel Schaller
Abstract
We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as reported by Staffans (Well-posed linear systems. Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, UK, 2005) to formulate a suitable concept for port-Hamiltonian systems, which allows a unifying approach to systems with boundary as well as distributed control and observation. The concept presented in this article is further neither limited to parabolic nor hyperbolic systems, and it also covers partial differential equations on multi-dimensional spatial domains. Our presented theory is substantiated by means of several physical examples.
Keywords
Port-Hamiltonian systems; Infinite-dimensional systems; System nodes; Boundary control
Citation
- Journal: Mathematics of Control, Signals, and Systems
- Year: 2025
- Volume:
- Issue:
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00498-025-00412-0
BibTeX
@article{Philipp_2025,
title={{Infinite-dimensional port-Hamiltonian systems: a system node approach}},
ISSN={1435-568X},
DOI={10.1007/s00498-025-00412-0},
journal={Mathematics of Control, Signals, and Systems},
publisher={Springer Science and Business Media LLC},
author={Philipp, Friedrich M. and Reis, Timo and Schaller, Manuel},
year={2025}
}
References
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30, (2018) – 10.1007/s00498-018-0223-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Gernandt, H., Haller, F. E. & Reis, T. A Linear Relation Approach to Port-Hamiltonian Differential-Algebraic Equations. SIAM J. Matrix Anal. Appl. 42, 1011–1044 (2021) – 10.1137/20m1371166
- van der Schaft, A. & Mehrmann, V. Linear port-Hamiltonian DAE systems revisited. Systems & Control Letters 177, 105564 (2023) – 10.1016/j.sysconle.2023.105564
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Math. Control Signals Syst. 35, 541–584 (2023) – 10.1007/s00498-023-00349-2
- van der Schaft, A. & Maschke, B. Differential operator Dirac structures. IFAC-PapersOnLine 54, 198–203 (2021) – 10.1016/j.ifacol.2021.11.078
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica 50, 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Reis, T. Some notes on port-Hamiltonian systems on Banach spaces. IFAC-PapersOnLine 54, 223–229 (2021) – 10.1016/j.ifacol.2021.11.082
- JA Villegas, A port-Hamiltonian approach to distributed parameter systems (2007)
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Jacob, B., Morris, K. A. & Zwart, H. Zero dynamics for networks of waves. Automatica 103, 310–321 (2019) – 10.1016/j.automatica.2019.02.010
- Jacob, B. & Kaiser, J. T. On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems. IEEE Control Syst. Lett. 3, 661–666 (2019) – 10.1109/lcsys.2019.2916814
- Jacob, B., Kaiser, J. T. & Zwart, H. Riesz Bases of Port-Hamiltonian Systems. SIAM J. Control Optim. 59, 4646–4665 (2021) – 10.1137/20m1366216
- Skrepek, N. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. EECT 10, 965 (2021) – 10.3934/eect.2020098
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Staffans, O. Well-Posed Linear Systems. (2005) doi:10.1017/cbo9780511543197 – 10.1017/cbo9780511543197
- Staffans, O. J. Passive and Conservative Continuous-Time Impedance and Scattering Systems. Part I: Well-Posed Systems. Mathematics of Control, Signals, and Systems (MCSS) 15, 291–315 (2002) – 10.1007/s004980200012
- Opmeer, M. R. & Staffans, O. J. Optimal Control on the Doubly Infinite Continuous Time Axis and Coprime Factorizations. SIAM J. Control Optim. 52, 1958–2007 (2014) – 10.1137/110831726
- Opmeer, M. R. & Staffans, O. J. Optimal Control on the Doubly Infinite Time Axis for Well-Posed Linear Systems. SIAM J. Control Optim. 57, 1985–2015 (2019) – 10.1137/18m1181304
- RA Adams, Sobolev spaces (2003)
- Diestel, J. & Uhl, J., Jr. Vector Measures. Mathematical Surveys and Monographs (1977) doi:10.1090/surv/015 – 10.1090/surv/015
- Tucsnak, M. & Weiss, G. Observation and Control for Operator Semigroups. (Birkhäuser Basel, 2009). doi:10.1007/978-3-7643-8994-9 – 10.1007/978-3-7643-8994-9
- HW Alt, An application-oriented introduction (2016)
- Malinen, J., Staffans, O. & Weiss, G. When is a linear system conservative? Quart. Appl. Math. 64, 61–91 (2006) – 10.1090/s0033-569x-06-00994-7
- Behrndt, J., Hassi, S. & de Snoo, H. Boundary Value Problems, Weyl Functions, and Differential Operators. Monographs in Mathematics (Springer International Publishing, 2020). doi:10.1007/978-3-030-36714-5 – 10.1007/978-3-030-36714-5
- T Kato, Perturbation theory for linear operators (2013)
- Skrepek, N. Quasi Gelfand Triples. Integr. Equ. Oper. Theory 97, (2024) – 10.1007/s00020-024-02780-9
- E Zeidler, Applied functional analysis, applications to mathematical physics (2012)
- C Johnson, Numerical solution of partial differential equations by the finite element method (1987)
- K-J Engel, One-parameter semigroups for linear evolution equations (2000)
- BDO Anderson, Network analysis and synthesis (1973)
- P Grisvard, Elliptic problems in nonsmooth domains (1985)
- L Tartar, An introduction to Sobolev spaces and interpolation spaces (2007)
- Schwenninger, F. L. Input-to-state stability for parabolic boundary control:linear and semilinear systems. Operator Theory: Advances and Applications 83–116 (2020) doi:10.1007/978-3-030-35898-3_4 – 10.1007/978-3-030-35898-3_4
- Augner, B. Well-Posedness and Stability of Infinite-Dimensional Linear Port-Hamiltonian Systems with Nonlinear Boundary Feedback. SIAM J. Control Optim. 57, 1818–1844 (2019) – 10.1137/15m1024901
- B Augner, Stabilisation of infinite-dimensional port-Hamiltonian systems via dissipative boundary feedback (2016)
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory 3, 207–229 (2014) – 10.3934/eect.2014.3.207
- Bastin, G. & Coron, J.-M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Progress in Nonlinear Differential Equations and Their Applications (Springer International Publishing, 2016). doi:10.1007/978-3-319-32062-5 – 10.1007/978-3-319-32062-5
- Ciarlet, P. G. Linear and Nonlinear Functional Analysis with Applications. (Society for Industrial and Applied Mathematics, 2013). doi:10.1137/1.9781611972597 – 10.1137/1.9781611972597
- Buffa, A., Costabel, M. & Sheen, D. On traces for H(curl,Ω) in Lipschitz domains. Journal of Mathematical Analysis and Applications 276, 845–867 (2002) – 10.1016/s0022-247x(02)00455-9
- Weiss, G. & Staffans, O. J. Maxwell’s Equations as a Scattering Passive Linear System. SIAM J. Control Optim. 51, 3722–3756 (2013) – 10.1137/120869444