Differential operator Dirac structures
Authors
Arjan van der Schaft, Bernhard Maschke
Abstract
As shown before, skew-adjoint linear differential operators, mapping efforts into flows, give rise to Dirac structures on a bounded spatial domain by a proper definition of boundary variables. In the present paper this is extended to pairs of linear differential operators defining a formally skew-adjoint relation between flows and efforts. Furthermore it is shown how the underlying repeated integration by parts operation is streamlined by the use of two-variable polynomial calculus. Dirac structures defined by formally skew adjoint operators together with differential operator effort constraints are treated within the same framework. Finally it is sketched how the approach can be also used for Lagrangian subspaces on bounded domains.
Keywords
Dirac structures; boundary control systems; two-variable polynomial matrices; factorization; Lagrangian subspaces
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 198–203
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.078
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{van_der_Schaft_2021,
title={{Differential operator Dirac structures}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.078},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={van der Schaft, Arjan and Maschke, Bernhard},
year={2021},
pages={198--203}
}
References
- Abraham, (1978)
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30, (2018) – 10.1007/s00498-018-0223-3
- Bloch, A. M. & Crouch, P. E. Representations of Dirac structures on vector spaces and nonlinear L-C circuits. Proceedings of Symposia in Pure Mathematics 103–117 (1998) doi:10.1090/pspum/064/1654513 – 10.1090/pspum/064/1654513
- Dorfman, (1993)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, (2017)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- van der Schaft, The Hamilto-nian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters 121, 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, Dirac and Lagrange algebraic constraints in nonlinear port-Hamiltonian systems, Vietnam J. of Mathematics (2020)
- van der Schaft, A. J. & Polyuga, R. V. Structure-preserving model reduction of complex physical systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 4322–4327 (2009) doi:10.1109/cdc.2009.5399669 – 10.1109/cdc.2009.5399669
- van der Schaft, A. & Rapisarda, P. State Maps from Integration by Parts. SIAM J. Control Optim. 49, 2415–2439 (2011) – 10.1137/100806825
- Trentelman, H. L. & Rapisarda, P. New Algorithms for Polynomial J-Spectral Factorization. Math. Control Signals Systems 12, 24–61 (1999) – 10.1007/pl00009844
- Willems, J. C. & Trentelman, H. L. On Quadratic Differential Forms. SIAM J. Control Optim. 36, 1703–1749 (1998) – 10.1137/s0363012996303062