On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems
Authors
Abstract
Infinite-dimensional linear port-Hamiltonian systems on a 1-D spatial domain with full boundary control and without internal damping are studied. This class of systems includes models of beams and waves as well as the transport equation and networks of nonhomogeneous transmission lines. The main result shows that well-posed port-Hamiltonian systems, with state space \( L^{2}{(}{(}0{,}1{)}{;}~\mathbb C^{n}{)} \) and input space \( \mathbb C^{n} \), are exactly controllable.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2019
- Volume: 3
- Issue: 3
- Pages: 661–666
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2019.2916814
BibTeX
@article{Jacob_2019,
title={{On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems}},
volume={3},
ISSN={2475-1456},
DOI={10.1109/lcsys.2019.2916814},
number={3},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Jacob, Birgit and Kaiser, Julia T.},
year={2019},
pages={661--666}
}
References
- villegas, A port-Hamiltonian approach to distributed parameter systems. (2007)
- Jacob, B., Morris, K. & Zwart, H. C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. Journal of Evolution Equations vol. 15 493–502 (2015) – 10.1007/s00028-014-0271-1
- augner, Stabilisation of infinite-dimensional port-Hamiltonian systems via dissipative boundary feedback. (2016)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Jacob, B. & Kaiser, J. T. Well-posedness of systems of 1-D hyperbolic partial differential equations. Journal of Evolution Equations vol. 19 91–109 (2018) – 10.1007/s00028-018-0470-2
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- schmid, Stabilization of Port-Hamiltonian Systems by Nonlinear Boundary Control in the Presence of Disturbances (2018)
- Humaloja, J.-P. & Paunonen, L. Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1480–1486 (2018) – 10.1109/tac.2017.2748055
- rebarber, An extension of Russell’s principle on exact controllability. Proc Eur Control Conf (ECC) (1997)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Weiss, G. Regular linear systems with feedback. Mathematics of Control, Signals, and Systems vol. 7 23–57 (1994) – 10.1007/bf01211484
- van der schaft, Port-Hamiltonian systems: An introductory survey. Proc Int Congr Math (2006)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Jeltsema, D. & Van Der Schaft, A. J. Lagrangian and Hamiltonian formulation of transmission line systems with boundary energy flow. Reports on Mathematical Physics vol. 63 55–74 (2009) – 10.1016/s0034-4877(09)00009-3
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Jacob, B. & Zwart, H. An operator theoretic approach to infinite‐dimensional control systems. GAMM-Mitteilungen vol. 41 (2018) – 10.1002/gamm.201800010
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- komornik, Exact Controllability and Stabilization the Multiplier Method (1994)
- Tucsnak, M. & Weiss, G. Observation and Control for Operator Semigroups. (Birkhäuser Basel, 2009). doi:10.1007/978-3-7643-8994-9 – 10.1007/978-3-7643-8994-9
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Staffans, O. Well-Posed Linear Systems. (2005) doi:10.1017/cbo9780511543197 – 10.1017/cbo9780511543197
- triggiani, Lack of exact controllability for wave and plate equations with finitely many boundary controls. Differential and Integral Equ (1991)
- engel, One-Parameter Semigroups for Linear Evolution Equations (2000)
- Tucsnak, M. & Weiss, G. Well-posed systems—The LTI case and beyond. Automatica vol. 50 1757–1779 (2014) – 10.1016/j.automatica.2014.04.016