Hidden Regularity in Singular Optimal Control of port-Hamiltonian Systems
Authors
Timm Faulwasser, Jonas Kirchhoff, Volker Mehrmann, Friedrich Philipp, Manuel Schaller, Karl Worthmann
Abstract
We study the problem of state transition on a finite time interval with minimal energy supply for linear port-Hamiltonian systems. While the cost functional of minimal energy supply is intrinsic to the port-Hamiltonian structure, the necessary conditions of optimality resulting from Pontryagin’s maximum principle may yield singular arcs. The underlying reason is the linear dependence on the control, which makes the problem of determining the optimal control as a function of the state and the adjoint more complicated or even impossible. To resolve this issue, we fully characterize regularity of the (differential-algebraic) optimality system by using the interplay of the cost functional and the dynamics. In case of the optimality DAE being characterized by a regular matrix pencil, we fully determine the control on the singular arc. In case of singular matrix pencils of the optimality system, we propose an approach to compute rank-minimal quadratic perturbations of the objective such that the optimal control problem becomes regular. We illustrate the applicability of our results by a general second-order mechanical system and a discretized boundary-controlled heat equation.
Citation
- Journal: DAE Panel
- Year: 2025
- Volume: 3
- Issue:
- Pages:
- Publisher: TIB Open Publishing
- DOI: 10.52825/dae-p.v3i.960
BibTeX
@article{Faulwasser_2025,
title={{Hidden Regularity in Singular Optimal Control of port-Hamiltonian Systems}},
volume={3},
ISSN={2939-9084},
DOI={10.52825/dae-p.v3i.960},
journal={DAE Panel},
publisher={TIB Open Publishing},
author={Faulwasser, Timm and Kirchhoff, Jonas and Mehrmann, Volker and Philipp, Friedrich and Schaller, Manuel and Worthmann, Karl},
year={2025}
}
References
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Berger, T., Ilchmann, A. & Trenn, S. The quasi-Weierstraß form for regular matrix pencils. Linear Algebra and its Applications vol. 436 4052–4069 (2012) – 10.1016/j.laa.2009.12.036
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Campbell, S. L. Optimal Control of Autonomous Linear Processes with Singular Matrices in the Quadratic Cost Functional. SIAM Journal on Control and Optimization vol. 14 1092–1106 (1976) – 10.1137/0314068
- Campbell, S. L., Meyer, Jr., C. D. & Rose, N. J. Applications of the Drazin Inverse to Linear Systems of Differential Equations with Singular Constant Coefficients. SIAM Journal on Applied Mathematics vol. 31 411–425 (1976) – 10.1137/0131035
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Faulwasser, T., Maschke, B., Philipp, F., Schaller, M. & Worthmann, K. Optimal Control of Port-Hamiltonian Descriptor Systems with Minimal Energy Supply. SIAM Journal on Control and Optimization vol. 60 2132–2158 (2022) – 10.1137/21m1427723
- Guerra, M. & Sarychev, A. Approximation of Generalized Minimizers and Regularization of Optimal Control Problems. Lecture Notes in Control and Information Sciences 269–279 doi:10.1007/978-3-540-73890-9_21 – 10.1007/978-3-540-73890-9_21
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Karsai, A. Manifold turnpikes of nonlinear port-Hamiltonian descriptor systems under minimal energy supply. Mathematics of Control, Signals, and Systems vol. 36 707–728 (2024) – 10.1007/s00498-024-00384-7
- Kölsch, L., Jané Soneira, P., Strehle, F. & Hohmann, S. Optimal control of port-Hamiltonian systems: A continuous-time learning approach. Automatica vol. 130 109725 (2021) – 10.1016/j.automatica.2021.109725
- Krantz, S. G. & Parks, H. R. A Primer of Real Analytic Functions. (Birkhäuser Boston, 2002). doi:10.1007/978-0-8176-8134-0 – 10.1007/978-0-8176-8134-0
- Kunkel, P. & Mehrmann, V. Local and Global Canonical Forms for Differential-Algebraic Equations with Symmetries. Vietnam Journal of Mathematics vol. 51 177–198 (2022) – 10.1007/s10013-022-00596-x
- Kunkel, P. & Mehrmann, V. Optimal Control for Linear Descriptor Systems with Variable Coefficients. Lecture Notes in Electrical Engineering 313–339 (2011) doi:10.1007/978-94-007-0602-6_15 – 10.1007/978-94-007-0602-6_15
- Kunkel, P., Mehrmann, V. & Scholz, L. Self-adjoint differential-algebraic equations. Mathematics of Control, Signals, and Systems vol. 26 47–76 (2013) – 10.1007/s00498-013-0109-3
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2024) doi:10.4171/etb/28 – 10.4171/etb/28
- Liberzon, D. Calculus of Variations and Optimal Control Theory. (2012) doi:10.1515/9781400842643 – 10.1515/9781400842643
- Liesen, J. & Mehrmann, V. Linear Algebra. Springer Undergraduate Mathematics Series (Springer International Publishing, 2015). doi:10.1007/978-3-319-24346-7 – 10.1007/978-3-319-24346-7
- Macchelli, A. Towards a port-based formulation of macro-economic systems. Journal of the Franklin Institute vol. 351 5235–5249 (2014) – 10.1016/j.jfranklin.2014.09.009
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling of a Flexible Link. IEEE Transactions on Robotics vol. 23 650–660 (2007) – 10.1109/tro.2007.898990
- Maschke, B., Philipp, F., Schaller, M., Worthmann, K. & Faulwasser, T. Optimal control of thermodynamic port-Hamiltonian Systems. IFAC-PapersOnLine vol. 55 55–60 (2022) – 10.1016/j.ifacol.2022.11.028
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- The Autonomous Linear Quadratic Control Problem. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1991). doi:10.1007/bfb0039443 – 10.1007/bfb0039443
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Philipp, F., Schaller, M., Faulwasser, T., Maschke, B. & Worthmann, K. Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems. IFAC-PapersOnLine vol. 54 155–160 (2021) – 10.1016/j.ifacol.2021.11.071
- Philipp, F. M., Schaller, M., Worthmann, K., Faulwasser, T. & Maschke, B. Optimal control of port-Hamiltonian systems: Energy, entropy, and exergy. Systems & Control Letters vol. 194 105942 (2024) – 10.1016/j.sysconle.2024.105942
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics vol. 164 104201 (2021) – 10.1016/j.geomphys.2021.104201
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. Journal of Geometry and Physics vol. 164 104199 (2021) – 10.1016/j.geomphys.2021.104199
- Reis, T. & Stykel, T. Passivity, port-hamiltonian formulation and solution estimates for a coupled magneto-quasistatic system. Evolution Equations and Control Theory vol. 12 1208–1232 (2023) – 10.3934/eect.2023008
- Schaller, M., Philipp, F., Faulwasser, T., Worthmann, K. & Maschke, B. Control of port-Hamiltonian systems with minimal energy supply. European Journal of Control vol. 62 33–40 (2021) – 10.1016/j.ejcon.2021.06.017
- Schaller, M. et al. Energy-optimal control of adaptive structures. at - Automatisierungstechnik vol. 72 107–119 (2024) – 10.1515/auto-2023-0090
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- Strikwerda, J. C. Finite Difference Schemes and Partial Differential Equations, Second Edition. (2004) doi:10.1137/1.9780898717938 – 10.1137/1.9780898717938
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Warsewa, A., Böhm, M., Sawodny, O. & Tarín, C. A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Applied Mathematical Modelling vol. 89 1528–1546 (2021) – 10.1016/j.apm.2020.07.038
- Wong, K.-T. The eigenvalue problem λTx + Sx. Journal of Differential Equations vol. 16 270–280 (1974) – 10.1016/0022-0396(74)90014-x
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced Order LQG Control Design for Infinite Dimensional Port Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 66 865–871 (2021) – 10.1109/tac.2020.2997373