Energy-shaping and entropy-assignment boundary control of the heat equation
Authors
Luis A. Mora, Yann Le Gorrec, Hector Ramirez
Abstract
This paper shows a finite-dimensional controller design for the boundary control of the heat equation on a 1D spatial domain. The controller exponentially stabilizes the plant at the desired equilibrium profile. The controller is defined using irreversible port-Hamiltonian systems formulation, and it is motivated by passivity-based control techniques developed for port-Hamiltonian systems defined on 1D spatial domains. The boundary controller is designed to have an exponentially stabilizing energy-shaping and entropy-assignment effect. It works with an actuation at one boundary and a reflective boundary condition at the other. The controller can handle situations where measurements are available at only one or both boundaries. The paper characterizes the existence of structural invariant functions to shape the closed-loop energy and assign the required closed-loop entropy. The design approach is illustrated through numerical simulations.
Keywords
Irreversible port-Hamiltonian systems; Heat equation; Boundary control; Passivity-based control
Citation
- Journal: Systems & Control Letters
- Year: 2024
- Volume: 189
- Issue:
- Pages: 105821
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2024.105821
BibTeX
@article{Mora_2024,
title={{Energy-shaping and entropy-assignment boundary control of the heat equation}},
volume={189},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2024.105821},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Mora, Luis A. and Le Gorrec, Yann and Ramirez, Hector},
year={2024},
pages={105821}
}
References
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian formulation of distributed diffusion processes. IFAC-PapersOnLine vol. 49 46–51 (2016) – 10.1016/j.ifacol.2016.10.752
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Duindam, (2009)
- van der Schaft, (2014)
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Micu, S. & Zuazua, E. Regularity issues for the null-controllability of the linear 1-d heat equation. Systems & Control Letters vol. 60 406–413 (2011) – 10.1016/j.sysconle.2011.03.005
- Krstic, Lyapunov adaptive stabilization of parabolic PDEs - Part I: A benchmark for boundary control. (2005)
- Martin, P., Rosier, L. & Rouchon, P. Null controllability of the heat equation using flatness. Automatica vol. 50 3067–3076 (2014) – 10.1016/j.automatica.2014.10.049
- Hu, Q.-Q., Jin, F.-F. & Yan, B.-Q. Boundary Stabilization of Heat Equation with Multi-Point Heat Source. Mathematics vol. 9 834 (2021) – 10.3390/math9080834
- Lohéac, J., Trélat, E. & Zuazua, E. Nonnegative control of finite-dimensional linear systems. Annales de l’Institut Henri Poincaré C, Analyse non linéaire vol. 38 301–346 (2021) – 10.1016/j.anihpc.2020.07.004
- Cannarsa, P., Da Prato, G. & Zolesio, J.-P. Dynamical shape control of the heat equation. Systems & Control Letters vol. 12 103–109 (1989) – 10.1016/0167-6911(89)90002-9
- Cheng, M.-B., Radisavljevic, V. & Su, W.-C. Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica vol. 47 381–387 (2011) – 10.1016/j.automatica.2010.10.045
- Mora, L. A., Le Gorrec, Y. & Ramirez, H. Available energy-based interconnection and entropy assignment (ABI-EA) boundary control of the heat equation: an Irreversible Port Hamiltonian approach. 2022 American Control Conference (ACC) 2397–2402 (2022) doi:10.23919/acc53348.2022.9867213 – 10.23919/acc53348.2022.9867213
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering vol. 20 S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Ydstie, B. E. Passivity based control via the second law. Computers & Chemical Engineering vol. 26 1037–1048 (2002) – 10.1016/s0098-1354(02)00041-8
- Gorrec, Y. L., Macchelli, A., Ramirez, H. & Zwart, H. Energy shaping of boundary controlled linear port Hamiltonian systems. IFAC Proceedings Volumes vol. 47 1580–1585 (2014) – 10.3182/20140824-6-za-1003.01966
- Macchelli, Control design for linear port-Hamiltonian boundary control systems: An overview. (2021)
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Zwart, Building systems from simple hyperbolic ones. Syst. Control Lett. (2017)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine vol. 52 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Krstic, (2008)
- van der Schaft, (2000)
- Kondepudi, (1998)
- (2004)
- LeVeque, (2002)